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To investigate heavy fermion behavior in the vanadium spinel LiV2O4, we start from a three-orbital Hubbard
model on the pyrochlore lattice and derive its low-energy effective Hamiltonian by an approach of real-space
renormalization-group type. We first derive the effective Hamiltonian numerically and then succeed in repre-
senting the results into an analytic form with physical operators for low-energy degrees of freedom in tetra-
hedron unit. The effective Hamiltonian is defined on the coarse-grained lattice, i.e., face-centered-cubic �fcc�
lattice, and it operates in a restricted Hilbert space defined in terms of a specific molecular orbital T2 in the unit.
One important tetrahedron configuration has a threefold orbital degeneracy and spin S=1, and correspondingly,
the effective Hamiltonian has spin and orbital exchange interactions of Kugel-Khomskii type as well as
correlated electron hoppings. The coupling constants in the effective Hamiltonian are determined from the
numerically obtained renormalized Hamiltonian and also by means of perturbation. We calculate and analyze
low-energy states of the effective Hamiltonian for the unit of four coupled tetrahedra both analytically and
numerically. Effective hopping elements in the effective Hamiltonian are renormalized to about 1/10 of the
original hopping integral. It is important that different virtual processes make opposite contributions to the
exchange term, and consequently the coupling constant is given by a remaining small value. This is particularly
prominent in the spin-spin channel, where ferromagnetic double-exchange processes compete with antiferro-
magnetic superexchange processes. Another important point is that various spin and orbital exchange processes
are competing to each other. Together with geometrical frustration of the effective fcc lattice, these two features
result in nearly degenerate three lowest-energy states of different types in the four coupled tetrahedra, and each
of the three has a finite degeneracy in spin and/or orbital. We also calculate spatial correlations of spin and
orbital and found that short-range spin-spin correlations are strongly entangled with orbital configurations. This
indicates that large remaining entropy at low temperature is related to slow coupled fluctuations of spin and
orbital. These results suggest the absence of phase transition in spin and orbital spaces down to very low
temperatures and their large fluctuations in the low-energy sector, which are key issues for understanding the
heavy fermion behavior in LiV2O4.
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I. INTRODUCTION

The vanadium spinel LiV2O4 is the first heavy fermion
compound discovered in d-electron systems.1 For about a
decade, various experimental and theoretical efforts have
been made to understand its heavy fermion behaviors. Low-
temperature properties such as specific heat, magnetic sus-
ceptibility, electrical resistivity, and Hall coefficient seem to
be explained by the quasiparticle picture with a large effec-
tive mass.2–5 Corresponding to these low-temperature behav-
iors, the electronic spectral function develops a peak above
the Fermi energy at low temperature observed in the laser
photoemission spectroscopy.6 All these low-temperature be-
haviors are characterized by one energy scale T��30 K. In
contrast to these low-temperature properties, LiV2O4 exhibits
bad metallic behaviors at higher temperatures.7 The tempera-
ture �T� dependence of magnetic properties is also interest-
ing. The size of magnetic moment changes from a mixed-
valent value �V3++V4+� to a smaller value at about 500
K.2,8,9 Neutron experiment showed that spin fluctuations
��q� change their spatial correlations at around T=T�. In the
higher-temperature region, spin fluctuations show a broad
peak at q=0, and this is considered as a consequence of
double-exchange interactions. In the lower-temperature re-
gion, neutron experiments exhibited that the peak position

shifts to �q�= �Q���0.6 Å−1.10,11 Therefore, it is important to
investigate the competition of ferromagnetic and antiferro-
magnetic fluctuations to understand the low-temperature
heavy fermion behaviors.

Regarding theories, it has been discussed that the heavy
fermion behaviors originate from the spin Kondo effect,12,13

the two-stage Kondo effect,14 the interorbital Coulomb
interaction,15 the spin-orbital fluctuations,16,17 the double-
exchange processes,18–20 the frustrations,21,22 and the dimen-
sional crossover from coupled one-dimensional chains to
three dimensions.23 Band structure calculations show that the
Fermi surfaces of LiV2O4 are composed by d electrons t2g
orbitals.12,24–27 These t2g orbitals split into a1g and eg orbitals
due to the trigonal distortion of surrounding oxygen atoms.
Anisimov et al.12 proposed the spin Kondo effect scenario
that the a1g orbital plays a role of localized electron and
interacts with conduction electrons in eg orbitals. A recent
study of cluster dynamical mean-field theory28 claims that
the heavy fermion behaviors are related to the criticality of
orbital-selective Mott transition of a1g electrons based on the
analysis using a simplified two-orbital Hamiltonian. Yush-
ankhai et al.29,30 analyzed the low-temperature Q� spin fluc-
tuations observed in the neutron-scattering experiment by
employing a phenomenological self-consistent renormaliza-
tion theory of spin fluctuation. They succeeded in fitting the
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neutron data qualitatively, but understanding of the micro-
scopic aspects of magnetic fluctuations and heavy quasipar-
ticles is desired. Despite these efforts, the competition of
ferromagnetic and antiferromagnetic interactions and cross-
over behaviors in the temperature dependence of susceptibil-
ity are not fully understood and it is desired to clarify how to
describe the quasiparticles on a frustrated pyrochlore lattice
and whether the frustration plays an important role for the
realization of heavy fermion behaviors.

In this paper, we focus on the coupling of orbital degrees
of freedom with spin and charge ones in LiV2O4 �Refs. 16
and 17� starting with a microscopic model on the pyrochlore
lattice. We discuss its interplay with spin and charge degrees
of freedom and its spatial correlations beyond a tetrahedron
cluster. To examine the role of orbital degrees of freedom
explicitly, we will use a three-orbital Hubbard model without
assuming that a1g orbital is localized. Since the unit cell con-
tains four vanadium atoms and each vanadium atom has
three t2g orbitals, straightforward calculations are not appli-
cable. In this paper, we shall employ a real-space
renormalization-group approach to extract a low-energy ef-
fective Hamiltonian for tetrahedron units.31 The effective
Hamiltonian is t-J-like model: localized spin-one and orbital-
triplet degrees of freedom are coupled via exchange interac-
tions and mobile electrons with threefold orbital degeneracy
hop between tetrahedron units. This effective model de-
scribes spin, orbital, and also charge fluctuations discussed in
Refs. 16 and 17 from a real-space point of view. Using this
effective model, we will discuss low-energy electron itiner-
ancy and competing interactions of spin and orbital degrees
of freedom in LiV2O4.

This paper is organized as follows. In Sec. II, we show the
starting microscopic model used in this paper. Then in Sec.
III, we will demonstrate the results of the exact diagonaliza-
tion to find low-energy degrees of freedom in one tetrahe-
dron unit. In Sec. IV, we will discuss a possible effective
Hamiltonian which can describe the low-energy sector. In
Sec. V, we will show the four-unit diagonalization results
calculated by using the low-energy states in the one tetrahe-
dron calculations. In Sec. VI, the low-energy physics is ana-
lyzed by the perturbative approach from the strong-coupling
limit. Finally, we discuss the effective model relevant to
LiV2O4 in Sec. VII and summarize the present paper in Sec.
VIII.

II. MODEL

We start with describing a realistic microscopic model of
electronic structure for the vanadium spinel LiV2O4. In
LiV2O4, the first-principles band calculations12,24–27 point
out that the electronic density of states near the Fermi energy
consists mainly of the d-electron t2g orbitals on vanadium
sites. In the spinel structure, the vanadium sites form a three-
dimensional pyrochlore lattice and the unit cell contains four
vanadium atoms which form a tetrahedron as shown in Fig.
1. The electron hopping processes can be described by the
effective V-V hoppings. Effects of V-O hoppings are in-
cluded as a renormalization of V-V hoppings. There is trigo-
nal distortion in the lattice due to O ion displacement. This

lifts threefold degenerate t2g orbitals into a1g �singlet� and eg
�doublet�. The vanadium valence is V3.5+ in average and this
corresponds to 1.5 electrons per atom, i.e., quarter filling of
t2g orbital.

The Hamiltonian that we will investigate in this paper is a
three-orbital t2g Hubbard model on the pyrochlore lattice
with trigonal splittings,

H = �
ij

�
���

tij
��di��

† dj�� + �
i��
�− �ni�� +

U

2
ni��ni�−�

+ �
���

�
��

�U�ni��ni��� + Jdi��
† di���

† di���di���� , �1�

where di��
† is a d-electron creation operator with the orbital

��=xy ,yz or zx� and the spin ��=↑ or ↓� at the site i and
its number operator is defined as ni��=di��

† di��. The electron
hoppings tij

�� are limited to the nearest-neighbor sites and �
is the chemical potential. The trigonal splittings are included
in tii

��. For the interaction term, we use standard onsite Cou-
lomb interactions without pair hopping terms as in other
studies.16,17 The equivalence of the three t2g orbitals
�xy ,yz ,zx� is satisfied by the relation32 U=U�+J and we will
use U, U�, and J satisfying this condition throughout this
paper. We choose the nearest-neighbor tight-binding param-
eters tij

�� by setting Slater-Koster parameters33 as t���dd��
=−0.527 eV, t���dd��=−0.085 to −0.13 eV, and t	

��dd	�=0.25 eV for �, �, and 	 bonds, respectively. We
also fix the trigonal splitting 
=�eg

−�a1g
=0.02 eV. Al-

though 
 was estimated to be �0.1 eV by the band
calculation,12 it does not directly correspond to the “micro-
scopic” 
 we use. Since low-energy degrees of freedom in
one tetrahedron eigenstates calculated in Sec. III with differ-
ent 
 are not qualitatively different, we choose 
=0.02 eV
as a representative one. Our choice of the tight-binding pa-
rameters can reproduce the overall feature of the band struc-
ture especially the degeneracy at the � point.
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FIG. 1. �Color online� �a� The lattice structure of pyrochlore
lattice. The unit cell contains four sites forming a tetrahedron. �b�
Tetrahedron units in the pyrochlore lattice form a face-centered-
cubic �fcc� lattice.
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Before examining the effects of electron correlations, we
study the electronic structure of the “noninteracting” case.
Some parts of the original Coulomb interactions are taken
into account in the level of local-density-functional theory in
the band-structure calculation and this renormalizes the tight-
binding parameters tij

��. The interaction terms in Eq. �1� are
the remaining parts which are not taken into account in the
band-structure calculations. Our strategy is that, first, we de-
termine the tight-binding parameters so as to reproduce the
band structures near the Fermi energy obtained by the band-
structure calculations and then, we proceed to investigate the
effect of the strong interactions.

Each unit cell contains four vanadium atoms and each
atom has three orbitals and therefore there are 12 bands in
total. Their energy dispersion and the noninteracting density
of states are shown in Fig. 2 for t�=−0.085 eV. Apart from
the high-energy regions the overall features are in good
agreement with the first-principles band-structure
calculations.12,24–26 It is noted that the weight of a1g orbitals
is larger than the one of eg near the Fermi energy. Among six
electrons per unit cell, the occupation numbers are na1g
=1.18 and neg

=4.82 per tetrahedron in this parameter set.
For later purpose, let us first consider molecular orbitals

in a single tetrahedron unit cell. Qualitatively, the energy
levels of the molecular orbitals correspond to the band ener-
gies at the � point. There are 12 molecular orbitals in total.
The unit cell has the point-group symmetry Td. The 12 orbit-
als constitute five multiplets labeled by irreducible represen-
tations of Td group, A1, E, T1, T2

�−�, and T2
�+�. Since there are

two T2 representations, we distinguish them by �−� and �+�.
These orbitals are listed in Table I and the wave functions of
the molecular orbitals are shown in Appendix A. We label
the irreducible representations by � and define the energy
level as ��. In this paper, we choose t� value such that the A1

level is higher than T2
�−� level and we show the t� dependence

of the energy at the � point in Fig. 3. We will see in Sec. VI
that the positions of A1 and T2

�−� levels are important for
low-energy properties and this is sensitive to t�. The param-

eter region we discuss in this paper is t�=−0.085 to
−0.13 eV and there �E��T2

�−� ��A1
��T1

��T2
�+�. Large con-

tribution of a1g orbital near the Fermi surfaces comes from
T2

�−� and A1 orbitals.

III. MANY-ELECTRON EIGENSTATES OF ONE
TETRAHEDRON

In this section, we include Coulomb interactions in
Hamiltonian �1� and investigate its eigenstates in a single
tetrahedron. Our three-orbital model is more complete than
earlier works on simplified localized models.34,35 The results
obtained in this section provide an insight to understand the
high-temperature properties of LiV2O4. Moreover, the many-
body wave functions obtained in this section become good
bases for the low-energy effective model which will be dis-
cussed in Sec. IV and four-tetrahedron calculations in Sec. V.

In the first part of this section, we will show the energy
spectra of one tetrahedron unit calculated by exact diagonal-
ization for typical sets of parameters in Hamiltonian �1�. For
LiV2O4, the average d-electron number is 1.5 per vanadium
site. This corresponds to six electrons per tetrahedron. We
will discuss the energy spectra for the total d-electron num-
ber nd=4, 5, 6, and 7. Then, in the second part, we will show
the ground-state phase diagram in the parameter space of
Coulomb interactions. In the third part, we will also investi-
gate how to construct low-energy spectra in terms of
molecular-orbital bases. In the final part of this section, we
evaluate the temperature dependence of the thermodynamic

TABLE I. Molecular orbitals of tetrahedron unit and their en-

ergy. D= 	� 3
4 	t�+ t�
+

t	

2 + 


6 �2+2�
t�

2 −
t	

2 − 


3 �2
1/2. The third and the
fourth columns represent the weight of a1g and eg atomic orbitals,
respectively, for t�=−0.085 eV. The values for two T2 representa-
tions depend on the hopping and trigonal splitting parameters but
their sums are constant.

� Degeneracy �� a1g eg

T2
�+� 3 1

4 t�+ 3
4 t	− 1

6
+D 0.35� 0.65�

T1 3 − 3
4 t�+ 1

2 t�− 3
4 t	+ 1

3
 0.00 1.00

A1 1 3
4 t�−2t�+ 1

4 t	− 2
3
 1.00 0.00

T2
�−� 3 1

4 t�+ 3
4 t	− 1

6
−D 0.65� 0.35�

E 2 3
4 t�− 1

2 t�− 5
4 t	+ 1

3
 0.00 1.00
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FIG. 2. �Color online� Tight-binding dispersion and density of
states calculated by the noninteracting Hamiltonian. The Fermi en-
ergy is indicated by dotted line.
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FIG. 3. Noninteracting one-particle energies at � point vs t�.
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quantities such as spin susceptibility, charge susceptibility,
and entropy.

A. Energy spectra of one tetrahedron

In this section, we show energy spectra of one tetrahedron
unit. The low-energy eigenstates of one tetrahedron unit will
be used as bases of the discussion in later sections. We will
also discuss thermodynamic properties such as spin suscep-
tibility and entropy, and in order to examine the thermody-
namic quantities in the whole temperature region, we need
all the important eigenstates. Since the Hilbert space is very
large, we restrict ourselves in the subspace for total
d-electron number nd
7 in the tetrahedron unit and d0, d1,
d2, and d3 configurations on each vanadium atom. The other
configurations dn with n�4 are not taken into account. We
have checked the validity of this truncated calculation at
least for the purpose of discussing the low-energy properties
of this system by comparing low-energy eigenvalues calcu-
lated by this truncated calculation with those of the full
Lanczos method. The configurations included in the trun-
cated calculations contain physical processes such as super-
exchange and double-exchange interactions which are impor-
tant when considering the low-energy properties of this
system. The numerical diagonalizations were carried out
with the open boundary condition, utilizing the spin rota-
tional symmetry which reduces the maximum matrix size
down to �46 000 for nd=7 and the total spin S=1 /2.

Figures 4�a�–4�c� show the energy eigenvalues in each

subspace of total spin S for U=1.5 eV, U�=1.3 eV, J
=0.2 eV, and t�=−0.085 eV. The numbers shown denote
the degeneracy of each eigenstate that arises from the point-
group symmetry. The ground state of nd=6 is total spin S
=1 and orbital triplet. Figures 4�d�–4�f� show the energy
eigenvalues for the same parameters in Figs. 4�a�–4�c� ex-
cept J=0.6 eV. As we increase J, the energies of the large
spin states become lower. The ground state in nd=6 sector is
fully polarized. In the nd=5 and 7 sectors, however, the
ground states are not fully polarized states. It is noted that
the energy differences between different nd for J=0.6 eV are
smaller than those for J=0.2 eV. This implies that charge
fluctuations are enhanced as J is increased, which will be
discussed in Sec. III D.

B. Ground-state phase diagram for one tetrahedron

In Fig. 5, we show the ground-state phase diagram of the
nd=6 space in the U-J plane for t�=−0.085 and −0.12 eV.
Note that the region J�U is unphysical. These results are
obtained for full Hamiltonian �1� without truncating the Hil-
bert space. We use a usual Lanczos method to calculate the
eigenenergies of the ground and the first excited states. There
are five phases dependent on U, J, and t�. Their total spin S
and point-group irreducible representation � are determined.
We represent the eigenstates by a usual notation 2S+1� and if
necessary, we will also write the electron number explicitly
as 2S+1�nd. The five phases correspond to 1E, 7A1, 1A1, 3T1,
and another 1E. On increasing �t��, 1A1 state disappears. The
other states seem to be robust against the variation in t�.

A wide range of the phase space is covered by 7A1 and 3T1
states. The 7A1 state has a fully polarized spin moment S
=3 which arises from ferromagnetic double-exchange inter-
actions. The 3T1 state is stabilized in the competition be-
tween double-exchange and antiferromagnetic superex-
change interactions. Electron configurations of these ground
states are schematically depicted in Fig. 6. As is easily seen
in �c�, the 7A1 phase corresponds to the case of “strong”
Hund’s coupling; J is larger than the level separations. As
shown in �d�, the 3T1 phase corresponds to the case of “mod-
erate” Hund’s coupling since Hund’s coupling is effective
only in the T2

�−� molecular orbitals. There appear two 1E
states in the phase diagram. These states are located at the
region where J is too small or large so that it would not be
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important to discuss the properties of LiV2O4. Therefore, we
do not consider these 1E states in more detail in the follow-
ing.

To compare with the nd=6 case, we also show the ground-
state phase diagram for nd=5 and 7 in Fig. 7. As is seen,
6A1

nd=5 and 2T2
nd=5 states and 6End=7 and 4A2

nd=7 states are the
ground states in a wide range of the parameters. It is illumi-
nating to note that the 4A2

nd=7 state is obtained by adding an
electron to the T2

�−� molecular orbital in the 3T1
nd=6 state and

the 2T2
nd=5 state is obtained by removing an electron from the

T2
�−� orbital. This is easily understood in Fig. 6. In a similar

way, 6End=7 state is obtained by adding an electron to the E
molecular orbital in the 7A1

nd=6 state and 6A1
nd=5 state is ob-

tained by removing an electron from the A1 orbital. The fully

polarized state 8T1
nd=7 does not appear in Fig. 7�c�. With in-

creasing �t��, the energy of 8T1
nd=7 state decreases around the

area U�3.0 eV and J�1.7 eV and then becomes the
ground state as shown in Fig. 7�d�. 2T1

nd=7 state corresponds
to the state obtained by adding a T2

�−� molecular-orbital elec-
tron to 1End=6. As in the cases of 1End=6, we will not further
discuss the region where J is large.

C. Low-energy spectrum of one tetrahedron

In this section, we proceed to detailed investigation of the
electron configurations of low-energy states. We will justify
the schematic picture of Fig. 6 by checking whether the same
picture applies to the ground states in other nd subspaces. We
will concentrate on the 3T1

nd=6 ground states since as will be
shown in Sec. III D, the high-temperature thermodynamic
properties of this phase are similar to the experimental data
of LiV2O4.

The low-energy part of Figs. 4�a�–4�c� is schematically
shown in Fig. 8. Not shown in Fig. 4, the ground state of
nd=4 is 1A1 and the energy gap to the first excited states is
large, 0.253 eV. Considering this and quantum numbers, the
ground state of nd=4 can be considered as a “closed-shell”
state which corresponds to the fully occupied E orbitals in
the sense of the schematic picture in Fig. 6�a�. Starting from
this, the low-energy spectra for nd�5 can be successively
constructed by adding electrons in the T2

�−� or A1 molecular
orbital as depicted in Fig. 8. Note that all the ground states
are constructed by adding electrons in the T2

�−� orbital. In-
deed, the following group theoretical arguments justify this
picture.

In order to characterize the low-energy spectrum in more
detail, it is important to identify the quantum numbers of the
ground states in each nd subspace shown in Fig. 8. As for the
total spin, it increases by 1/2 upon adding one electron. This
simply means that electrons in the T2

�−� orbitals tend to align
their spins, i.e., Hund’s rule. The symmetry of the orbital part
can also be understood by starting from ground state in the
nd=4 subspace. This has the closed-shell electron configura-
tion and therefore the symmetry of A1 representation. The
ground state in the nd=5 subspace is constructed by adding
one electron in the T2

�−� orbitals. Its symmetry is given by the
product of two representations, one for the starting many-
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body wave function and the other for the molecular orbital of
added electron. This case is simple and the result is A1 � T2
=T2.

Next, the ground state for nd=6 is constructed similarly
by adding the second electron in the T2

�−� orbitals to the
ground state T2

nd=5. Thus, considering the decomposition of
product representation T2 � T2=A1 � E � T1 � T2, we have
four possibilities of orbital symmetry for the ground state in
nd=6 space. However, the spin part is triplet �S=1� due to
Hund’s rule and its wave function is symmetric, and there-
fore we should choose an antisymmetric representation in
T2 � T2. This is indeed unique and T1. Thus, the wave func-
tion of nd=6 with S=1 should have a T1 symmetry if the T2

�−�

orbital plays a role of the one-particle excitations. The other
states, 1A1, 1E, and 1T2, appear as excited states as shown in
Fig. 8.

Finally, the ground state for nd=7 is, once again, con-
structed by adding the third electron in the T2

�−� orbitals.
Since the ground-state wave function has spin 3/2 as pre-
dicted by Hund’s rule, all the three T2

�−� orbitals are occupied
by electrons, aligning their spins. The symmetry of this state
is 4A2. In the group theoretical language, this A2 is under-
stood from the relation T1 � T2=A2 � E � T1 � T2. The states
other than A2 also appear as excited states as shown in Fig. 8.

D. Spin susceptibility and entropy

Experiments of magnetic susceptibility indicate that, at
around T�500 K, the effective moment of vanadium ion
Seff

2 changes from �1.5–1.75 at high temperatures to �0.9 at
low temperatures.8,9 This behavior was interpreted as Kondo-
type screening by Hopkinson and Coleman,14 but it is impor-
tant to check whether alternative explanations are possible.
The Weiss temperature � also changes at �500 K �Refs. 8
and 9�; it is estimated as ��−500 K by fitting the results at
600–1000 K and ���−30 K at 80–300 K. It is valuable to
calculate the temperature dependence of susceptibility from
our one tetrahedron data and compare the results to the ex-
perimental data.

The spin susceptibility �s�T� per vanadium site is given
by �s�T�=g2�B

2�S2� /3NsT with g, �B, and Ns as the electron’s
g factor, Bohr magneton, and the number of sites, respec-
tively. Here, �¯� denotes grand canonical average at tem-
perature T with keeping the average electron number at 1.5
per site, and we evaluate this by averaging over the truncated
Hilbert space of nd=5, 6, and 7 as explained in Sec. III A. In
order to obtain �s�T�, we calculate �S2� with varying tem-
perature.

Figure 9 shows the temperature dependence of the inverse
spin susceptibility �s

−1�T� for several J values. In the high-
temperature regime, the �s�T� follows a Curie-Weiss law ir-
respective of J values. There is a clear crossover marked by
arrow at the temperature Tcross, where the slope of �s

−1�T�
changes. The high-temperature Weiss temperature � is esti-
mated in the region of T�800 K and the low-temperature
Weiss temperature �� is estimated in the region of 50–200
K. The results are listed in Table II together with the magni-
tude of the effective moment per site Seff

2 �Seff�2�. � ���� and
Seff

2 �Seff�2� are estimated by using the following form:

�s�T� =
g2�B

2Seff
2

3�T − ��
. �2�

The magnitude of high-temperature Seff
2 is comparable to

�3 /4+2� /2=1.375 which corresponds to that of the atomic
mixed-valence limit with Hund’s rule, d1 with the spin s
=1 /2 and d2 with s=1. It is noted that the high-temperature
Seff

2 has only weak J dependence. �s�T� for J=0.3 eV is
qualitatively in good agreement with the experimental
results8,9 in three points: �, Tcross, and Seff

2 . The experimental
values are ��−500 K, Tcross�500 K, and
Seff

2 �1.5–1.75.8,9 The deviations of Seff
2 would be due to the

ferromagnetic correlations beyond the present calculations.
���� and Seff�2 are smaller than high-temperature ��� and Seff

2 ,
respectively. The values of Seff�2 reflect the ground and low-
lying excited states. For J=0.2, 0.3, and 0.6 eV, Seff�2 is very
close to that for the ground states. Although the ground states
are spin singlet for J=0.0 and 0.4 eV, the low-energy excited
states with spin S�0 contribute Seff

2 �0 in the temperature
range where we fit the data. The �s�T� for J=0.6 eV has a
clear ferromagnetic behavior due to the double-exchange
mechanism �see ��0 in Table II�. The behaviors at very
low temperatures depend on the total spin S of the ground
state for each parameter set. The low-temperature upturns for
J=0.0 and 0.4 eV reflect that the ground states are spin-
singlet states.

We find that the crossover temperature marked by arrow
in Fig. 9 is related to the energy scale of charge fluctuations.

TABLE II. Curie-Weiss temperature and effective moments. �
and Seff

2 are estimated by fitting data in Fig. 9 at T�800 K. Except
J=0.4 eV, �� and Seff�2 are estimated by fitting data in Fig. 9 at
50–200 K. �� and Seff�2 for J=0.4 eV are estimated at 90–160 K.

J
�eV� 0.0 0.2 0.3 0.4 0.6

� �K� −2133 −1233 −774 −395 171

Seff
2 �V−1� 1.43 1.43 1.39 1.33 1.23

�� �K� −4.5 6.1 2.2 −27 2.5

Seff�2 �V−1� 0.327 0.450 0.456 0.529 2.91

0.0

0.5

0 1000 2000

T (K)

[χ
]
(g
µ
)
(e
V
)

2

B

-
1

J=0.0 eV

0.2

0.3

0.4

0.6

Tcross

s

1.0

FIG. 9. �Color online� Temperature dependence of inverse spin
susceptibility. U=1.5 eV, t�=−0.085 eV, and U�=U−J. The ar-
rows indicate crossover temperatures Tcross.

K. HATTORI AND H. TSUNETSUGU PHYSICAL REVIEW B 79, 035115 �2009�

035115-6



The charge susceptibility �c�T���nd
2− �nd�2� /T is shown in

Fig. 10. The peak position of �c�T� ��Tmax� is related to
Tcross of spin susceptibility in Fig. 9. The inset of Fig. 10
shows the ratio R�Tmax /Tcross. Apart from large J region, R
is nearly constant and R�3. From this, we can understand
that the crossover in spin susceptibility arises from charge
fluctuations at least from small to moderate J values. This
interpretation is consistent with the effective moments in
Table II and suggested by the early exact diagonalization
study.35 The interpretation of the crossover attributed to
charge fluctuations in a tetrahedron is valid at least when
tetrahedron coupling is weak, e.g., at high temperature.

Figure 11 shows the entropy S�T� per tetrahedron as a
function of temperature. The finite values at zero-
temperature are due to the degeneracy of ground states in
nd=6 subspace. The experimental data of entropy at 100 K
from the specific-heat data are �5kB log 2 �kB: Boltzmann
constant� per tetrahedron,4 and this is larger than the present
results at 100 K. Since we ignore intertetrahedron correla-
tions in the present calculations, it is not adequate to discuss
the low-temperature entropy quantitatively. We note that
there still remains large entropy �more than kB log 9 at 100
K� for J
0.4 eV. This low-energy entropy might become
an origin for heavy fermion behaviors in LiV2O4. This point

will be discussed in Sec. IV B based on an effective model
for coupled tetrahedra.

IV. LOW-ENERGY EFFECTIVE MODEL OF ONE
TETRAHEDRON UNIT

In order to discuss low-energy properties of LiV2O4, one
has to note that among several ground states of one tetrahe-
dron unit, 3T1 phase has both spin and orbital degrees of
freedom. The magnetic susceptibility and the entropy calcu-
lated for this phase capture the character of the experimental
results at high temperature. Therefore, we now focus on the
3T1 phase and discuss its low-energy properties in detail. To
describe metallic behaviors of LiV2O4, it is important to ex-
amine one-particle excitations in this phase. We will con-
struct an effective Hamiltonian for one tetrahedron unit and
demonstrate that the T2

�−�-orbital electrons only are sufficient
to describe the low-energy one-particle excitations of Hamil-
tonian �1� in 3T1 phase. This construction can be regarded as
a procedure of a real-space renormalization group.31 Based
on the results obtained in this section, we will proceed to the
next procedure of the renormalization group in Sec. V.

A. One-particle excitations

Let us now investigate one-particle excitations in the 3T1
phase in detail. First, we examine which molecular orbitals
in a tetrahedron play a dominant role upon creating or anni-
hilating one electron in the ground state with nd=6. To this
end, we define matrix elements A���

nd which describe the tran-
sitions between ground states through electron annihilation
and creation with the electron orbitals specified,

A���
nd � �

gnd
,gnd+1

�gnd+1�d�↑
† �gnd

��gnd
�d��↑�gnd+1� . �3�

Here, d��
† represents the creation operator of d electron in the

molecular orbital �=E, T2
�−�, A1, T1, or T2

�+� with spin �. gnd
denotes the ground states in the nd subspace and the summa-
tion is over the degenerate ground states with the largest Sz.
Regarding the transition from the ground state in the nd+1
subspace to another ground state in the nd subspace, it is
most effective when one removes an electron in the orbital
that is determined by the eigenvector for the largest eigen-
value of the A���

nd .
As for hole and particle excitations in the 3T1 phase, we

calculated A���
5 and A���

6 , respectively, from the ground
states obtained by exact diagonalization. The parameters
used are U=1.5 eV, J=0.2 eV, and t�=−0.12 eV. The ma-
trix element �gnd+1�d��

† �gnd
� for �=T2

�−� is about ten times
larger in magnitude than the others. Correspondingly, we find
that the eigenvector for the largest eigenvalue has the 99%
weight in the T2

�−� orbitals. This means that this molecular
orbital plays the predominant role in the single particle or
hole excitations between ground states in different nd sub-
spaces.

Now we discuss the coherence of one-particle excitations.
The quasiparticle renormalization factor is the standard mea-
sure of coherence and is defined by the square of the matrix
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element between the n-electron ground state and
�n�1�-electron ground state, ��gn�d��gn+1��2. In the present
case, the ground state is degenerate and we also have mul-
tiple orbitals, and therefore we need to generalize the defini-
tion of the renormalization factor. For each component of the
nd-electron ground state �gnd

�, the renormalization factor can
be defined by a similar formula, Z= �W�2 / �Wfree�2, with W
= �gnd

opt�dopt�gnd+1� with the optimal combination of the orbital
wave function dopt=��a�d�. Wfree is a corresponding matrix
element in the noninteracting system. The final ground state
gnd

opt should also be chosen as an appropriate linear combina-
tion of degenerate states such that �W� is maximized. This
definition gives the same result independent of the choice of
the initial ground state since this can be taken into account
by the optimization of dopt.

For simplicity, we concentrate on the renormalization fac-
tor in the case of the g6 with the largest Sz. Practically, the
above formula can be approximated as Z=� /�free. Here �
=�gnd

,gnd+1
��gnd

�dopt�gnd+1��2 and the summation is taken the

same as in Eq. �3�, while �free is a corresponding value in the
noninteracting system. Indeed, the � is the largest eigen-
value �max of A���

nd since dopt maximizes the matrix element.
For U=1.5 eV, J=0.2 eV, and t�=−0.12 eV, we find

�max � 1.6 for nd = 5, �max � 0.80 for nd = 6. �4�

In the case of the noninteracting system, it is easy to show
that T2

�−� is the optimal orbital and �max
free =2 and 1 for nd=5

and 6, respectively. It is noted that the value of 2 comes from
the fact that two of the g6 states have a finite matrix element.
Thus, in both cases of particle and hole excitations, the cor-
responding quasiparticle has the renormalization factor Z
��max /�max

free �0.8 and this is mainly composed of the T2
�−�

orbital as discussed above. When the repulsion is set stron-
ger, U=3.0 eV, the renormalization factor is slightly re-
duced but still quite large Z�0.66. The T2

�−� orbital continues
to have about ten times larger matrix elements than the oth-
ers, showing its dominant role in one-particle excitations.

We also calculate the electron occupation number of each
orbital �������gnd

�d��
† d���gnd

� for each nd subspace, and the
result is plotted in Fig. 12. The value is averaged over de-
generate ground states. The occupation number of the T2

�−�

orbital increases by nearly one when nd increases by one.
This is consistent with the analysis of A���

nd . As discussed in
Sec. III B, a simple picture of the 3T1

nd=6 ground state is the

fully occupied E orbitals plus partially filled T2
�−� orbitals.

The result of orbital occupation not only confirms this pic-
ture but also shows that a non-negligible number of electrons
occupy the high-energy one-particle molecular orbitals such
as T1 and T2

�+�, suppressing the E-orbital occupation from
four. The larger the correlations U, the larger a number of
electrons occupy the high-energy molecular orbitals as
shown in Fig. 12�b�. Thus, the one-particle excitations
should be regarded as dressed quasiparticles in Landau’s
Fermi-liquid picture rather than “free” electrons.

These investigations are directly checked by calculating
Green’s functions G���+ i	� in the molecular-orbital basis,
where 	 is infinitesimal constant. G���+ i	� is defined as a
Fourier transform of retarded Green’s function G��t� at T
=0,

G��t� = − i��t��
gnd

�gnd
�
d��t�,d�

†�0���gnd
� �nd = 6� , �5�

where ��t� is Heaviside’s step function, 
¯� denotes anti-
commutator, and we omit the spin index �. We show the
one-particle spectral function −Im G���+ i	� /� with 	
=0.001 eV in Figs. 13�a�–13�e�. Note that the scale of the
vertical axis is different for each figure. There are large peaks
in low-energy region for �=E, T2

�−�, and A1. On the other
hand, there are no large peaks in low-energy region for �
=T1 and T2

�+� but broad incoherent components in the high-
energy region. This also agrees with the simple picture in
Fig. 6. In Fig. 13�f�, we show the low-energy part of total
spectral weight −Im Gtot��+ i	� /� defined as Gtot��+ i	�
���G���+ i	�. As expected from Fig. 8, the lowest-energy
excitations are those of T2

�−� orbital and the corresponding
peaks are very large. Another important point is that the peak
of the A1 orbital is also large and located at low energy.

B. Effective Hamiltonian of one tetrahedron unit

The results obtained in Sec. IV A show that T2
�−� orbitals

only are sufficient to describe the low-energy sector of 3T1
phase. In this section, we construct an effective Hamiltonian
of these T2

�−� electrons and determine its interaction param-
eters.

The general Hamiltonian with spin rotation symmetry of
T2

�−� electrons at the tetrahedron n, retaining only the two-
body interactions, should be written as

Heff
1 tet�n� = ��

��

nn�� + Ũ�
�

nn�↑nn�↓

+ �
���

�
���

�Ũ�nn��nn��� + J̃an��
† an���

† an���an���

+ T̃ �
���

an�↑
† an�↓

† an�↓an�↑ + C , �6�

where C is a constant and nn��=an��
† an��, with �=a, b, or c

�see Appendix A�. an��
† creates a “quasiparticle” of T2

�−� or-
bital at a tetrahedron n that is dressed by the interactions and
its vacuum corresponds to the 1A1

nd=4. � is the one-particle

energy level. The interaction parameters Ũ, Ũ�, and J̃ are the
molecular-orbital version of the coupling in the t2g Hubbard
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FIG. 12. �Color online� Occupation numbers of molecular orbit-
als in the ground states in each nd for J=0.3 eV and t�

=−0.12 eV. �a� U=1.5 eV. �b� U=3.0 eV.

K. HATTORI AND H. TSUNETSUGU PHYSICAL REVIEW B 79, 035115 �2009�

035115-8



model �1� and now the pair hopping term T̃ is also generally
generated.

In order to check the validity of Hamiltonian �6�, we com-
pare the numerically calculated eigenenergies �Enum� of four-
site case of the original Hamiltonian �1� with “one-site”
eigenenergies of effective model �6�. The low-energy eigen-
values are listed in Table III. The number in the fifth and
sixth columns is �Heff

1 tet� /Enum, which measures the validity
of Hamiltonian �6�. The results are very close to unity and
the validity of Hamiltonian �6� is quantitatively proved. The
estimated values of the interaction parameters turn out to be
smaller than the bare d-electron interactions by the factor
1/10-1/5. This is because the orbitals are extended over four
sites and there is a reduction in energy scale by the one
tetrahedron renormalization factor Z as discussed in Sec.

IV A. The pair hopping term T̃ is also induced in this effec-
tive model but its strength is weaker than the others.

We note that a few states in Table III cannot be described
by only T2

�−� orbitals, and these states correspond to

A1-orbital excitations as shown in Fig. 8. Although we can
also construct an effective Hamiltonian including these A1
orbitals, we do not try to do this since the model will become
too complicated. Indeed, this simplification is not so bad
since none of the “ignored” states in Table III is the ground
state in any nd space. It should be noted that the above argu-
ment does not hold near the phase boundary.

V. EFFECTIVE MODEL OF FOUR TETRAHEDRA AND
CORRELATIONS OF SPIN AND ORBITAL

In this section, we will construct an effective Hamiltonian
describing interacting tetrahedron units in the 3T1 phase. We
will then calculate its low-energy eigenstates for the unit of
four tetrahedra and the spin and orbital correlation functions
for the ground states.

A. Effective Hamiltonian for coupled tetrahedra

In Sec. IV B, we have constructed an effective model for
an isolated tetrahedron unit. We now derive an effective
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FIG. 13. One-particle spectrum −Im G���+ i	� vs �. U=1.5 eV, J=0.3 eV, t�=−0.12 eV, and 	=0.001 eV. �a� �=E, �b� T2
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�+�. �f� Detail structure of the low-energy region. The quantum number 2S+1� for the corresponding peak is also shown.

EFFECTIVE HAMILTONIAN OF A THREE-ORBITAL… PHYSICAL REVIEW B 79, 035115 �2009�

035115-9



model for coupled tetrahedra in the 3T1 phase by including
intertetrahedron processes. It is intertetrahedron d-electron
hoppings that couple otherwise isolated tetrahedron units.

In Sec. III A, we obtained low-energy eigenstates 
���� in
a tetrahedron unit. When tetrahedron units are decoupled,
eigenstates of the whole system are simply direct products of
the tetrahedron eigenstates: ��1�2 . . .�N�, where N is the num-
ber of tetrahedron units. The next step of the real-space
renormalization-group procedure is to obtain effective cou-
plings between these low-energy states. These tetrahedra are
coupled by d-electron hoppings between nearest-neighbor
pairs of original sites,

Hhopp = �
��i,j��

�
���

�tij
��di��

† dj�� + H.c.� , �7�

where ��i , j�� indicates that i and j are the nearest-neighbor
vanadium sites and belong to different unit cells �tetrahedra�.
There, we need the matrix element of electron hopping pro-

cesses in the tetrahedron basis t�n�m

�n��m� ,

t�n�m

�n��m� � ��n�m�Hhopp��n��m� � . �8�

Here, ��n�m� is a direct product state of two tetrahedra n and
m. In practice, we need to calculate the matrix element of the

d-electron creation �annihilation� operator di��
† �dj���. A typi-

cal term in Eq. �8� is

��n�m�tij
��di��

† dj����n��m� � = tij
����m���n�di��

† dj����n����m� �

= tij
���− 1�P�n���n�di��

† ��n��

���m�dj����m� � , �9�

where i �j� belongs to the tetrahedron n �m� and P�n�
is the

electron number in ��n��. Since the matrix elements
��n�di��

† ��n�� and ��m�dj����m� � in Eq. �9� are local quantities,
we can evaluate them for the wave functions obtained in Sec.

III. Using t�n�m

�n��m� obtained in this way, we can write our effec-
tive Hamiltonian Heff as

Heff = �
n�

����n���n� + �
�n,m�

�
�n�m�n��m�

t�n�m

�n��m� ��n�m���n��m� � .

�10�

Here, ��n,m� is the summation over nearest-neighbor pairs of
tetrahedra and �� is the energy eigenvalue for one tetrahe-
dron which is independent of n.

In the actual calculations, we take not only the T2
�−� orbit-

als related to the one tetrahedron effective Hamiltonian �6�
but also other orbitals such as A1. This gives corrections to
Eq. �6�. Later in Sec. VII, we will further simplify this ef-
fective model �10� to a more physical form. Since the matrix
element ��n�di��

† ��n�� is typically of the order of �0.3 and the
largest hopping term is �t��=0.527 eV in our calculations,

the order of magnitude of �t�n�m

�n��m� � is estimated as t̄eff��0.3�2

�0.5=0.045 eV, the order of �1 /10��t��. This value is rela-
tively smaller than the charge excitation energy of one tetra-
hedron 
c�0.1 eV shown in Fig. 10. Correspondingly, the
exchange interactions among tetrahedron units are of the or-
der of t̄eff

2 / �2
c���0.05�2 / �2�0.1�=0.0125 eV. This is an
energy scale of the low-energy properties of this system. The
exchange interactions among tetrahedron units will be dis-
cussed in Sec. VI. Indeed, the values of the various exchange
interactions turn out to be less than 0.01 eV.

Before starting the detailed analysis of this model, let us
briefly estimate the number of basis states we need to keep
for this effective Hamiltonian from the viewpoint of entropy.
We are primarily interested in the low-temperature behaviors
of LiV2O4 below the coherence temperature T��30 K. For
example, the entropy at around 100 K is S�T�100 K�
�5kB log 2�kB log 32 per four vanadium sites determined
from the specific-heat data.4 The effective Hamiltonian
should have enough degrees of freedom for reproducing this
value.

As discussed in Sec. IV B, the average electron density
implies that the charge subspaces of nd=5, 6, and 7 are
dominant local configurations, and it is natural to consider a
few lowest-energy states in each subspace. Here we consider
the states with partially filled T2

�−� orbitals and count the total
entropy per tetrahedron. For these configurations, there are
m5=6 states in nd=5 space, m6=15 states in nd=6 space, and
m7=20 states in nd=7 space. This restricted Hilbert space

TABLE III. Comparison of model Hamiltonian �1� and the re-
sults of truncated exact diagonalization for U=1.5 eV and t�=
−0.085 eV. �Heff

1 tet� /Enum are shown in the fifth and the sixth col-
umns for J=0.2 and 0.3 eV. The five parameters indicated and a
trivial constant term are estimated by using six “input” states. The
states with �nd ,S ,��= �6,1 ,T2� and �7, 3

2 ,T1� cannot be described
by Heff alone.

nd S � Heff
1 tet−C J=0.2 eV 0.3 eV

4 0 A1 0 Input Input

5 1
2 T2 � Input Input

6 1 T1 2�+ Ũ�− J̃ Input Input

6 0 A1 2�+ Ũ+2T̃ Input Input

6 1 T2
� � �

6 0 E 2�+ Ũ− T̃ Input Input

6 0 T2 2�+ Ũ�+ J̃ Input Input

7 3
2 A2 3�+3Ũ�−3J̃ 0.9989 1.001

7 3
2 T1

� � �

7 1
2 T2 3�+2Ũ�+ Ũ− J̃+ T̃ 0.9972 0.9999

7 1
2 E 3�+3Ũ� 0.9967 0.9963

7 1
2 T1 3�+2Ũ�+ Ũ− J̃− T̃ 0.9974 0.9980

C �eV� −5.490 −4.861

� �eV� −0.4090 −0.3332

Ũ �eV� 0.3140 0.2626

Ũ� �eV� 0.2989 0.2502

J̃ �eV� 0.0215 0.0257

T̃ �eV� −0.0036 −0.017
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corresponds to that of Eq. �6� in the case of one tetrahedron.
In Appendix B, we calculate the entropy for this set of con-
figurations. The result is

Stot = kB log�m6 + 2�m5m7� � kB log 36.9. �11�

This value is close to the experimental estimate at around
100 K.4 We repeat the same calculation with retaining only
the ground states in each charge subspace: m5=6, m6=9, and
m7=4. This is a minimal set for describing charge fluctua-
tions and electron itineracy. Using the same formula, we ob-
tain this time S�kB log�9+4�6��kB log 18.8. This value is
now large enough to reproduce the value at the coherence
temperature T=T�: �2.5kB log 2�kB log 5.66. This suggests
constructing minimal low-energy effective model defined in
this restricted Hilbert space. We can expect that this de-
scribes low-energy heavy fermion behaviors. We will pro-
pose such a t-J-like effective model later in Sec. VII.

B. Ground state of four tetrahedron units

Now we investigate the ground state when four tetrahedra
in 3T1 phase are coupled by electron hoppings. We are pri-
marily interested in the case of 24 electrons in the four tet-
rahedra in total. To this end, we employ an exact diagonal-
ization method for effective model �10�. Because of memory
limit of our computer, we cut off the high energy states in
our diagonalization. We first retain states with nd=5, 6, and 7
in each tetrahedron, which are minimal states to describe
charge fluctuations and thus the intertetrahedron superex-
change interactions. Second, in each nd subspace, we retain
several lowest-energy states only. The number of the retained
states Ncut

nd is tuned depending on the parameters in the
model, and typically Ncut

5 =8, Ncut
6 =24, and Ncut

7 =32. Intertet-
rahedron correlations are included in the energy level �� and
wave functions 
����. The ground-state wave function is to be
obtained as

�g� = �
�1

��
�2

��
�3

��
�4

�W�1�2�3�4

g ��1�2�3�4� , �12�

where �� denotes the sum over the space restricted by Ncut
nd .

The approximation of truncating high-energy states is con-
trolled by varying Ncut

nd and we have checked our results by
increasing the number of retained states.

First, we show the ground-state phase diagram for the
case of 24 electrons in four tetrahedra. We calculate ground
states by setting Ncut

5 =8, Ncut
6 =24, and Ncut

7 =32 for J

0.3 eV and the determined phase diagram is shown in Fig.
14. There are three phases: 1E, 3T1, and 7A2. Once again, a
state with total spin S belonging to � representation of the Td
point group is denoted by 2S+1�. The ground states change
from magnetic to nonmagnetic one as �t�� increases. This
point will be explained in Sec. VI by estimating the ex-
change interactions between tetrahedron units.

We should note that the phase boundaries do not converge
yet with increasing the cutoff numbers 
Ncut

nd �. This phase
diagram shows approximate, rather than precise, locations of
level crossing. However, we can learn a few important char-
acters of the ground state of the four coupled tetrahedra. The
first point is that in the shown region of the t�-J parameter

space, these three states, 1E, 3T1, and 5A2, are the three low-
est multiplets and their energy separations are very small.
The second point is that the tendency that the states with
large spin appear at the small �t�� region is robust among the
different truncation numbers used. In Sec. VI, we will see
that these three states appear in low-energy sector of a local-
ized effective exchange model and spin-orbital and orbital
correlations are similar with each other. It should be noted
that these results correspond to short-range correlations in
the bulk system, and total spin of the four-tetrahedron units
does not indicate whether the bulk system is magnetic or
nonmagnetic.

Figure 15 shows the t� dependence of the energy of the
three states appearing in the phase diagram relative to that of
3T1 for different sets of Ncut

nd , �a� �Ncut
5 ,Ncut

6 ,Ncut
7 �

= �8,24,32�, �b� �20, 34, 44�, and �c� �32, 34, 44�. The pa-
rameter set �a� is the same as that used in Fig. 14. The
ground state for �b� is 1E for t�=−0.12 eV, 3T1 for t�=
−0.11 and −0.10 eV, and 5A2 for t�=−0.09 eV, and the
ground state for �c� is 1E for t�
−0.10 eV and 3T1 for t�

=−0.09 eV. The energy of 5A2 strongly depends on t� com-
pared to that of 1E and 3T1. In the region of large �t��, states
with a large spin are energetically unfavored. Superexchange
via higher-energy virtual states is also present, and some of
them generate antiferromagnetic correlations. This is under-
stood by observing that the region of the 5A2 state shifts to
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FIG. 14. Phase diagram for four tetrahedra with nd=24 and U
=1.5 eV. Ncut

5 =8, Ncut
6 =24, and Ncut

7 =32. The retained states are
those listed in Fig. 8.
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FIG. 15. �Color online� t� dependence of the ground-state en-
ergy with � symmetry E� relative to that of 3T1 for four tetrahedra
calculations for U=1.5 eV and J=0.3 eV. The results are obtained
by three sets of truncation schemes. �a� �Ncut
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7 �= �8,34,32� is used because of

additional near degeneracy.
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the small �t�� region as we increase 
Ncut�. It is noted that the
3T1 and 1E states are almost degenerate in a wide range of
parameters and it is not conclusive which is the ground state
within the present calculations. The energy difference be-
tween the ground state and the first excited states is typically
10−4–10−3 eV. This might mean the existence of very low-
lying excited states in the limit of large Ncut

nd .

C. Short range correlations

Next, we calculate the spin-spin correlation function S�q�
for the 16 sites in the unit of four tetrahedra. Here, S�q� is an
equal-time correlation, i.e., a frequency integrated quantity,
and defined by

S�q� =
1

Ns
�
ijg

�g�Si
zSj

z�g�
Ng

exp	iq · �xi − xj�
 , �13�

Si
z =

1

2�
��

�ni��, �14�

where �g� and Ng means the index and degeneracy of ground
states, respectively. Ns is the number of lattice sites �Ns=16
in the present case� and xi is the position of site i. Note that
Si

z is the spin operator not of a tetrahedron unit but at the
vanadium site i. Since the sum over the ground-state degen-
eracy also includes the spin multiplet, the correlation is of
the scalar part of two spin product,

�
g

�g�Si
zSj

z�g� =
1

3�
g

�g�Si · Sj�g� . �15�

In Appendix C, we show how to calculate the matrix element
�g�Si

zSj
z�g� by using one tetrahedron basis ���.

We show S�q� for U=1.5 eV and J=0.2 eV in Fig. 16
for the three different phases. This is calculated with the
cutoff numbers �Ncut

5 ,Ncut
6 ,Ncut

7 �= �8,24,32�. Since S�0� is
proportional to the ground-state expectation value of ��iSi

z�2,
there are notable differences near q=0 for different ground
states. There is also difference in the spatial anisotropy in
large q. In the present calculations, S�q� monotonically in-
creases from the zone center to the zone boundary in all the
three ground states. This behavior is different from the finite
�Q���0.6 Å−1 spin fluctuation observed in the neutron
experiment.10 This might be due to the fact that the present
S�q� is a frequency integrated quantity, while the neutron
experiment observed a low-energy part of spin fluctuations
�0.2–0.8 meV�.10

We also calculate the orbital correlations. The orbital-
orbital correlation function So

���q� is defined by

So
���q� =

1

Ns
�
ijg

�g�O�
†�i�O��j��g�

Ng
� exp	iq · �xi − xj�
 ,

�16�

where O� are orbital operators defined by O4a= i�dyz�
† dzx�

−H.c.� /2, O4b= i�dzx�
† dxy�−H.c.� /2, O4c= i�dxy�

† dyz�−H.c.� /
2, O5a= �dyz�

† dzx�+H.c.� /2, O5b= �dzx�
† dxy�+H.c.� /2, O5c

= �dxy�
† dyz�+H.c.� /2, O3a= �2dxy�

† dxy�−dyz�
† dyz�−dzx�

† dzx�� /

�12, and O3b= �dyz�
† dyz�−dzx�

† dzx�� /2 �here the vanadium site
i and � summation are not shown explicitly�. The evaluation
of the matrix element �g�O�

†�i�O��j��g� is similar to the case
of S�q�. We show for 1E ground states the real-space-orbital
correlations M���ij���g�g�O�

†�i�O��j��g� /Ng, with i=2
fixed and its Fourier transform So

���q� in Figs. 17�a� and
17�c�, respectively. Note that M4b4b�2j� and M5b5b�2j� are
identical to M4c4c�2j�� and M5c5c�2j��, respectively, where j�
is the mirror image point of j with respect to �11̄0� plane,
and therefore we do not plot the latter. As we can see in Fig.
17�a�, intertetrahedron correlations are strong for the O5a,
O5b, and O5c components. This is clearly seen as a difference
in the average of �M���2j�� for 5
 j
16 as shown in Fig.
17�b�. As for the wave-vector dependence, S5a5a�q� has a
peak correspondingly at q=0 as shown in Fig. 17�c�. The
other modes of orbital fluctuations have similar q depen-
dence within the first Brillouin zone. We find similar
M���2j� for other ground states and the values of correla-
tions coincide with each other in less than 5%. This means
that 1E, 3T1, and 5A2 states have very similar orbital fluctua-
tions but the spin correlations are different as shown in Fig.
16.

VI. EXCHANGE INTERACTION BETWEEN
TETRAHEDRA: SPIN-ORBITAL MODEL

In this section, we will carry out the second-order pertur-
bation calculations in the hopping terms and derive a model
of Kugel-Khomskii type36 for the spin S=1 and the orbital
triplet ��=T1� degrees of freedom in order to investigate the
ground states in more detail. The phase diagram of four tet-
rahedra obtained in Sec. V B will be explained in terms of
various exchange interactions such as pure magnetic, pure
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FIG. 16. �Color online� Spin-spin correlation function S�q� on
�qx ,qy ,0� plane. U=1.5 eV and J=0.2 eV. �a� 1E state �t�=
−0.12 eV�. �b� 3T1 state �t�=−0.11 eV�. �c� 5A2 �t�=−0.09 eV�.
The first Brillouin zone is indicated by thick lines. The vanadium-
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orbital, and coupled magnetic and orbital exchange interac-
tions. Characteristic orbital configurations coupled to spin
degrees of freedom in terms of tetrahedron units will be dis-
cussed in the final part of this section.

A. Exchange Hamiltonian

In order to uncover the obtained ground states and their
properties, we investigate various exchange interactions of
spin and orbital degrees of freedom between different tetra-
hedra. To examine orbital and spin correlations, we tempo-
rarily neglect charge fluctuations and consider 3T1 multiplet
in nd=6 space at each tetrahedron. As in a usual manner, we
carry out a calculation of the second-order perturbation in the
hopping terms 	the last term in Hamiltonian �10�
 and derive
Kugel-Khomskii-type exchange interactions36 of spin and or-
bital degrees of freedom. In the second-order perturbations, 9
states of 3T1 multiplet are used as initial and final states,
while 8 states in nd=5 and 32 states in nd=7 are kept as
virtual states. For nd=5 and 7 states, we keep states with S
=1 /2 and 3/2 in the low-energy spectra since the unper-
turbed states are those with S=1 for nd=6.

We assign the state whose orbital is on the plane37 includ-
ing the bond �n-m� as Tz=0 one ���0��. The other two states
are assigned to Tz=� ���� ��. We show in Fig. 18�a� an
example of this assignment. We use simplified notations for
the orbital label in T1 representations hereafter such as xy
��xy+c1z��x2−y2� and so on. It should be noted that the
same orbital is assigned to different Tz states depending on
bond directions, as depicted. We use for the orbital part eight

operators, T� ��=1,2 , . . . ,8�. For orbital degrees of free-
dom, we introduce a representation that depends on the bond
direction. Let us consider a bond and orbitals at the ends of
it. �=1, 2, and 3 correspond to the pseudospin-1 operator Tx,
Ty, and Tz, respectively. For ��4, we define T4�
Tx ,Ty�,
T5�
Ty ,Tz�, T6�
Tz ,Tx�, T7�Tx

2−Ty
2, and T8��2Tz

2−Tx
2

−Ty
2� /�3. For the spin part, we use standard spin-1 operators

Sa �a=x, y, and z�. Using these operators, the exchange
Hamiltonian between tetrahedra n and m 	bond �n-m�
 reads

Hex
nm = �

�,�=0

8 ��2

3
J1

���nm� + J2
���nm�S�n� · S�m��

� T��n�T��m�� , �17�

where T��n� 	S�n�
 means the orbital �spin� operator at tet-
rahedron n and T0�n���2 /3. The prefactor of J1

�� is just the
normalization. J1

00 is nothing but the origin of energy and we
set J1

00=0.
The actual estimations of J1

�� and J2
�� are discussed in

Appendix D and it turns out that the number of independent
couplings is reduced from symmetry arguments and is 13 in
J1

�� and 21 in J2
��. In Fig. 19, we show J1

�� and J2
�� for the

�1-2� bond as a function of t�. Since Ja
��= �Ja

�� for a=1 and
2, we plot only one of them. It is found that all couplings are
smaller than 10 meV, which is consistent with experimental
results for the Weiss temperature ���−40 to −30 K esti-
mated below 400 K.1,8,9

The coupling J2
00 is pure spin exchange and decreases

with decreasing �t��, indicating the enhancement of ferro-
magnetic processes. We can explain this tendency by exam-
ining important virtual processes. When adding an electron
of A1 orbital to the 3T1

nd=6 ground state, we obtain basically
4T1

nd=7 state which is the lowest excited state in nd=7 sub-
space �see Fig. 8 and Table III�. Since this virtual state 4T1

nd=7

has spin 3/2, 4T1
nd=7 state contributes to ferromagnetic ex-

change interactions in the second-order perturbations. The
point is that the energy of this state decreases as �t�� de-
creases. Therefore, the ferromagnetic interactions are en-
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FIG. 17. �Color online� Orbital-orbital correlation function in
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and another site j. The site indices are indicated in �d�. �b� Average
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hanced. As �t�� increases, the energy of 4T1
nd=7 state increases.

In the large �t�� region, the antiferromagnetic exchange inter-
actions generated via the excited 2T2

nd=7, 2End=7, and 2T1
nd=7

states dominate. As a result, J2
00�nm�S�n� ·S�m� �pure mag-

netic exchange interaction� notably becomes strong among
others and this is antiferromagnetic coupling. Thus, the in-
tertetrahedron exchange interaction depends significantly on
the excitation energy of A1 orbital. This also explains the
tendency observed in Fig. 14, i.e., magnetic phases appear in
small �t�� regions.

B. Spin-orbital model: Four coupled tetrahedron units

With the obtained couplings J1
�� and J2

��, we numerically
diagonalize the spin-orbital exchange model for the coupled
four-tetrahedron system,

Hex = �
1
n�m
4

Hex
nm, �18�

and calculate a few lowest-energy states. The result is that
the ground state is 1E state for J=0.2 eV and −0.13
 t�

−0.09 eV. By comparing this result to the phase diagram of
Fig. 14, it turns out that the perturbative calculations under-
estimate the ferromagnetic exchange coupling as is easily
understood by observing the lack of double-exchange inter-
actions in Hamiltonian �18�. The results of the present per-
turbative analysis are similar to the cutoff scheme �c� in Fig.
15 except t�=−0.09 eV where the ground state is 3T1. Then,
in order to check whether we can explain the phase diagram

in Fig. 14 by the exchange model �18�, we carry out the same
calculation by replacing perturbatively calculated J2

00 by
J2 eff

00 . By introducing an effective pure magnetic exchange
interaction J2 eff

00 , we can incorporate enhancement of ferro-
magnetic correlations. We show the three lowest-energy ei-
genvalues obtained in this way in Fig. 20. The three lowest
states are indeed those appearing in the phase diagram �Fig.
14�. This indicates that the present perturbative calculations
capture the essential part of this system. As J2 eff

00 decreases,
the ground state changes from 1E to 5A2. However, the 3T1
state does not become the ground state with varying J2

00 only,
and therefore we would need more complete manipulations
of the exchange coupling constants.

C. Orbital wave function

Now we investigate in detail the orbital part of low-
energy eigenstates of the exchange model Hex for the
coupled four-tetrahedron system. The important point is that
among the pure orbital interactions 
J1

���, J1
88�nm�T8�n�T8�m�

term is always the largest and nearly independent of t�. Since
the orbital operator T8 is defined as

T8 =
1
�3

	� + ��+ � − 2�0��0� + �− ��− �
 , �19�

this term favors the bond configurations in which one orbital
lies on the plane including the bond ��0�� and the other does
on the plane perpendicular to that ��� ��. The system of four
coupled tetrahedra has 30 such states, and four out of the six
bonds have the favored configurations in each of them. We
can illustrate these 30 states by simple graph representations.
Typical graphs are shown in Fig. 21. Vertices of the square
represent tetrahedra. For each bond satisfying the condition
above, we draw an arrow which ends at the vertex �tetrahe-
dron� where the orbital state is local �0�. In this representa-
tion, there is at most one arrow going in a vertex but more
than one arrow can go out from a vertex. There are two
distinct types of graphs. The graphs in Fig. 21�a� are “closed
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path” graphs and contain two orbitals of T1 multiplet. The
graphs in Fig. 21�b� have a shape similar to lasso �rope with
a noose at end� and contain three orbitals of T1 multiplet.

The orbital part of the ground states for four tetrahedra
can be well described by linear combinations of these 30
orbital states. When setting J2

��=0, we can show that three
lowest-energy orbital eigenstates have A1, E, and T1 symme-
tries. Once again, symmetry classification is useful to under-
stand this. The states of type �a� are classified as A1 � E
� T1, and those of the �b� type are classified as A1 � A2
� 2E � 3T1 � 3T2. In Fig. 22, we graphically show the basis
states of each irreducible representation for type �a�. Those
for type �b� are shown in Appendix E. The pure orbital terms
J1

�� hybridize type �a� and �b� states. The states of each rep-
resentation interact in the Hamiltonian only with those of the
same representation. Therefore, as far as these 30 orbital
states are concerned, the size of the matrix to diagonalize is
reduced to 2, 3, and 4 for A1, E, and T1 representation, re-
spectively, and we can diagonalized them analytically. The
matrix elements for this restricted Hilbert space are calcu-
lated in Appendix E. It is noted that another diagonal inter-
action J1

33�0 lifts the degeneracy of types �a� and �b� and
favors type �a� configurations. Taking into account the hy-
bridizations between type �a� and �b� states, the representa-
tions appearing in type �a� would have a lower energy. This

explains why A1, E, and T1 orbital states are the three lowest-
energy states.

D. Spin-orbital coupled wave functions

Now let us go back to the phase diagram �Fig. 14� and
discuss these three types of ground states. In Sec. VI C, we
have discussed the low-energy orbital part in detail. Now we
proceed to study the spin part together with the orbital one.
As shown above, the low-energy orbital states are linear
combinations of the type �a� and �b� states shown in Fig. 21.
For simplicity, we here discuss only the type �a� configura-
tions since the weight of type �a� is about two times larger
than type �b� in the present parameter sets. The six states of
type �a� are reduced to three irreducible representations
A1

orb
� Eorb � T1

orb of Td point group as shown in Fig. 22. Each
of the three has only one set of basis states and therefore
these states are automatically eigenstates of any orbital
Hamiltonian with Td symmetry as far as the type �a� states
are dominant. When the spin-orbital couplings J2

�� are
switched on, these irreducible representations of orbital are
to be hybridized to constitute eigenstates of the spin-orbital
system Hex.

First, we start to discuss 1E states. The Td point-group
symmetry of the system implies that the S=0 sector of spin-
wave functions in four tetrahedra is decomposed to two irre-
ducible representations A1

spin
� Espin as shown in Appendix F

4. Since the ground state considered now belongs to E rep-
resentation, this state is a linear combination of Eorb � A1

spin,
A1

orb
� Espin, and the E representation in Eorb � Espin=A1 � A2

� E. Our calculation shows that, among them, Eorb � Aspin

and Eorb � Espin components are much larger than A1
orb

� Espin. These dominant two components are entangled with
each other, i.e., the wave function is not approximated by a
single product of spin and orbital parts. This means that the
spin and orbital are strongly coupled with each other.

To discuss the correlations of orbital and spin further, let
us calculate for the ground state the probability that, upon
fixing the orbital configuration to a given one, the two spins
S�n� and S�m� have the total spin Snm. Note that the other
two spins also have the same total spin Snm since the 1E state
is spin singlet. The results for two representative orbital con-
figurations are plotted in Fig. 23 upon gradually switching on
the spin-orbital couplings. Namely, a control parameter 	 is
introduced to replace J2

��→	J2
�� with 0
	
1, and the cor-

relations are plotted as a function of 	. If there are no corre-
lations either in orbital or spin parts, the probability is
1 /90�0.011, and the configurations with much larger prob-
ability are the dominant ones. In the orbital part, each type
�a� configuration has weight of 0.13, while 0.04 for type �b�
at 	=0. Overall difference in weights between Figs. 23�a�
and 23�b� is due to this difference in the orbital weights. It is
noted that spin fluctuations are strongly correlated with or-
bital configurations. The position of spin-singlet �spin-
quintet� tetrahedron pair is correlated with local-orbital con-
figurations as shown in Figs. 23�c� and 23�e� 	Fig. 23�d�
.

For type �a� graphs 	shown in Fig. 23�c�
, spin-singlet
correlations are strong in the tetrahedron pair for which the
orbital energy is not favored, i.e., bonds without arrow in the

(a) (b)
1

23

4

xy

yz

zx

(c)

x

y

z

FIG. 21. �Color online� Typical graphical representations of or-
bital states favored by J1

88. The site indices are indicated by the
numbers 1–4 around the first graph in �a�. Examples of �a� closed
path graphs and �b� “lasso” graphs. �c� Actual orbital shapes in two
representatives.

A1 + + +++

2 + +2+

−
+

−

− −

−

−

−

E

T1

FIG. 22. Six orbital basis states of type �a� in Fig. 21 classified
by Td point-group symmetry. Normalization factor is not shown.
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figure. This tendency is understood by noting that, next to the
largest coupling J1

88, the dominant coupling constants are J2
00,

J2
88, and J2

08 as seen in Fig. 19. Their contributions to energy
are compared for different spin-orbital configurations in
Table IV. The largest coupling is the pure magnetic exchange
J2

00 which is antiferromagnetic. The others are spin-orbital
couplings J2

88 and J2
08 which are both positive. Type �a� states

have only �0,��, �� ,0�, and ��1,1� configurations. The
sum of the three terms gives the lowest energy for spin sin-
glet on the bonds ��1,1�, i.e., there exist singlet correlations

between bonds without arrow. As for the �0,�� orbital sec-
tor, the energy balance is more delicate but the maximum
spin configuration is stabilized. This is because although the
pure spin coupling favors the singlet one, the energy gain
from J2

80 and J2
88 is larger for S12=2 configuration.

For type �b� graphs, spin-quintet correlations are strong
on two of the six bonds, �1–3� and �2–4�, as shown in Fig.
23�d�. Since the total spin is singlet, this also means that
spin-singlet correlations are enhanced on the other four
bonds as depicted in Fig. 23�e�. Existence of ferromagnetic
correlations can be explained as follows. As we discussed in
the case of type �a� graphs, the ferromagnetic correlations are
enhanced on the bonds �0,�� and �� ,0�. Since the total spin
is singlet, two quintets should not be overlapped. Combining
these implies ferromagnetic spin correlations on the �1–3�
and antiferromagnetic correlations on all the others. The
other two ground states, namely, 3T1 and 5A2 states, can be
understood in the same line of arguments.

We show in Fig. 24 the spin-spin correlation for the three
types of ground states. Here, instead of the usual spin-spin
correlation, we decompose it into nine parts each of which
corresponds to a different orbital configuration on the bond
considered. Therefore, the plotted value includes the prob-
ability of each orbital configuration. Summing up over the
nine parts leads to the ordinary spin-spin correlation. We can
see that in both of 3T1 and 5A2 states, the spin-singlet corre-
lations are strong at �� ,�� orbital configurations as in the
1E case. In the state with larger total spin, of course, spin-

TABLE IV. Matrix elements of four dominant exchange interactions for each configuration of two-tetrahedron units: the total spin S12 and
orbital 	Tz�1� ,Tz�2�
. �� ,�� is the representative for �+,+�, �+,−�, �−,+�, and �−,−� and �� ,0� is the representative for �+,0�, �−,0�, �0,+�,
and �0,−�.

Types of exchange interactions

S12 2 2 2 1 1 1 0 0 0

	Tz�1� ,Tz�2�
 �� ,�� �� ,0� �0,0� �� ,�� �� ,0� �0,0� �� ,�� �� ,0� �0,0�

T8�1�T8�2� 1
3 − 2

3
4
3

1
3 − 2

3
4
3

1
3 − 2

3
4
3

S�1� ·S�2� 1 1 1 −1 −1 −1 −2 −2 −2

S�1� ·S�2�T8�1�T8�2� 1
3 − 2

3
4
3 − 1

3
2
3 − 4

3 − 2
3

4
3 − 8

3

S�1� ·S�2�	T8�1�T0�2�+T0�1�T8�2�� 2�2
3 −

�2
3

4�2
3 − 2�2

3

�2
3

4�2
3 − 4�2

3
2�2
3

8�2
3
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FIG. 23. �Color online� Weight of spin wave function on each
bond vs 	. U=1.5 eV, J=0.2 eV, and t�=−0.12 eV. �a� Case of
closed path orbital configuration. From the symmetry, note that
�S14,S24� is equivalent to �S12,S34�. �b� Case of lasso orbital con-
figuration. 	�c�–�e�
 Various spin-pair correlations.

-0.16

-0.12

-0.08

-0.04

0.00

0.04

<
S
(1
)
S
(2
)P
>

E T1 A2

(Tz(1),Tz(2))=

(+,+) or (−,−)

.

−−

1 3 5

(+,−) or (−,+)

(+,0) or (0,+)

(0,0)

o

FIG. 24. �Color online� Spin-spin correlation function projected
to four distinct cases of orbital configurations �S�1� ·S�2�Po� for 1E,
2T1, and 5A2 states. Po is the orbital projection operator to
	Tz�1� ,Tz�2�
= �� ,��� with � ,��=� and 0. The parameters used are
t�=−0.11 eV, U=1.5 eV, and J=0.3 eV.

K. HATTORI AND H. TSUNETSUGU PHYSICAL REVIEW B 79, 035115 �2009�

035115-16



spin correlation generally becomes more ferromagnetic �shift
toward positive�. For 1E and 3T1, the spin-spin correlations
are nearly absent at �0,�� orbital configurations. This comes
from the bond average in the definition of the spin-spin cor-
relation in Fig. 23 and ferromagnetic contributions �quintets
depicted in Fig. 23� almost cancel with antiferromagnetic
ones �singlet�.

VII. DISCUSSIONS

Let us reconsider the effective renormalized Hamiltonian.
It is represented in terms of tetrahedron variables as Eq. �10�.
We first analyze it numerically and further discussed its ki-
netic and interaction terms separately, and we found several
important processes. Now let us assemble these pieces to
build a full effective Hamiltonian. Since the low-energy
physics is concerned, electron hoppings are constrained, and
among them we keep minimal hopping processes. Namely,
the electron number in each tetrahedron is limited to nd=5,
6, or 7, and we consider only the hopping processes between
ground states in these subspaces. The processes including
excited states are neglected. It is possible to represent this
constraint if we consider only T2

�−�-molecular orbital, as dis-
cussed in Sec. III C. The E orbital is fully occupied in the
cases considered, and we represent this configuration as
vacuum. We have shown in Sec. III that the ground states for
nd=5, 6, and 7 have spin S=1 /2, 1, and 3/2, respectively.
This means that constrained electron hoppings generate fer-
romagnetic double-exchange interactions. We note that, as
we discussed in Sec. V A, the total entropy of this restricted
Hilbert space is S�kB log 18.8 per tetrahedron, which is
larger than the experimental value at the coherence tempera-
ture T�, kB log 5.66.4 Thus, we expect that this restricted Hil-
bert space has large enough degrees of freedom to describe
the heavy fermion behaviors at low temperatures.

The other terms of the effective model are interactions.
We can use the same spin-orbital exchange Hamiltonian �17�
for this part but need to modify its coupling constants. The
values of couplings J1

�� and J2
�� shown in Fig. 19 were de-

termined by including all the possible hopping processes in
the second-order perturbation. However, now that we treat
the hopping processes connecting ground states as real pro-
cesses in the kinetic term, we need to subtract their contri-
butions from the exchange coupling constants.

These arguments show that a key issue is the competition
between ferromagnetic and antiferromagnetic interactions
coupled with orbital degrees of freedom. This was discussed
in Sec. VI D, and we come to a conclusion that the low-
energy effective model is similar to the t-J model of high-
temperature superconductor; it is defined in terms of a local-
ized spin one with orbital triplet and mobile quasiparticle
with T2

�−� symmetry on the effective lattice �fcc�. The local-
ized spin and orbital degrees of freedom are coupled via
exchange interactions between nearest neighbors. The hop-
ping processes of the mobile quasiparticles change local spin
and orbital configurations. The leading terms of the effective
Hamiltonian read

Heff = �
n

	− �effN�n� + UeffN
2�n�


+ �
�n,m�

��
���

�t̃nm
��Pan��

† am��P + H.c.�+�
��
�2

3
J̃1

���nm�

+ J̃2
���nm�S�n� · S�m��T��n�T��m�� + ¯ , �20�

where P is the projection operator to the restricted Hilbert
space, namely, the ground states of nd=5, 6, and 7 spaces.
an�� represents the mobile quasiparticle with the T2

�−� orbital
and the spin � at the tetrahedron n. N�n� is the number op-
erator defined as N�n�=���an��

† an��. S and T� are the local-
ized spin one and orbital-triplet operators of nd=6 space,

respectively. �eff=−�+ �Ũ�− J̃� /2 and Ueff= �Ũ�− J̃� /2 are the
effective chemical potential and Coulomb interaction. The
hopping of quasiparticle �an��� is renormalized to a smaller
value about �400 K at most by two factors. One is the
overlap of T2

�−� molecular orbital with a t2g atomic orbital on
one site, while the other is the renormalization factor of qua-
siparticle �Z�0.8 for U=1.5 eV�. Precisely speaking, ex-
change processes are present not only for pairs of nd=6 con-
figurations but also for other configurations with different nd,
but we consider in model �20� only the former ones since
they are dominant. As discussed before the exchange cou-

plings J̃a
�� �a=1 and 2� are slightly different from Ja

�� in Eq.
�17�, but their effects are essentially the same as before. The
difference is that virtual processes via the ground states of

nd=5 or 7 configurations are now not counted for J̃a
��. For

example, ferromagnetic contributions in spin-exchange cou-

plings are reduced leading to J̃2
00�J2

00.
As we noted above, there exist competing interactions

some of which favor magnetic ground states, while the oth-
ers stabilize nonmagnetic states. Moreover, the magnetic in-
teractions are strongly correlated with the orbital ones. There
are 30-fold degeneracies in the orbital configurations in the
case of four coupled tetrahedra. Due to spin-orbital couplings
these degeneracies are lifted and we investigated which pair
of orbitals favors ferromagnetic or antiferromagnetic corre-
lations. These competitions are controlled particularly by the
energy level of A1 molecular orbital. This is because ferro-
magnetic spin exchange is generated by virtual hopping pro-
cesses including A1 orbital and its coupling constant is en-
hanced when A1 energy level becomes lower. The four-
tetrahedron calculations in Sec. V B showed that tetrahedron
degrees of freedom �spin 1 and orbital T1� are partially
screened by the exchange interactions, which lead to non-
magnetic 1E ground states. It is quite likely that the heavy
fermion behaviors of LiV2O4 stem from these competitions.
Low-temperature metallic behaviors in LiV2O4 are domi-
nated by correlated one-particle excitations. We expect that
these competing fluctuations in spin and orbital also influ-
ence the coherence of electron dynamics and strongly renor-
malize their quasiparticle weight. A part of the renormaliza-
tion already comes from fast dynamics in the tetrahedron
unit discussed in Sec. IV 	Z�0.80 �0.66� for U
=1.5 �3.0� eV as a tetrahedron unit
. It is expected that the

EFFECTIVE HAMILTONIAN OF A THREE-ORBITAL… PHYSICAL REVIEW B 79, 035115 �2009�

035115-17



quasiparticle weight Z is further renormalized to a much
smaller value when the effects of low-energy excitations in
the effective model �20� are fully taken into account. We
expect that due to the competing interactions in Eq. �20�, the
low-temperature quasiparticles �if obtained� are dressed by
the spin, orbital, and spin-orbital interactions and thus be-
come heavy fermions. This kind of scenario is discussed in
Refs. 16 and 17 by random-phase approximation �RPA� and
also by a simplified one-dimensional model in Ref. 20. In
this paper, we have proposed a low-energy and real-space
picture of this system.

VIII. SUMMARY

In the following, we review this paper as a summary. In
this paper, we have investigated the three-orbital Hubbard
model on the pyrochlore lattice in order to study the heavy
fermion behaviors of LiV2O4. To study which type of de-
grees of freedom plays an important role in low-energy dy-
namics of this model, we have employed an approach of
real-space renormalization-group type. In the first stage of
coarse graining, block variables are defined as follows for
each primitive unit cell of pyrochlore lattice, i.e., a tetrahe-
dron composed of four vanadium atoms.

First we numerically diagonalized the three-orbital Hub-
bard model and calculated the ground state and low-energy
excited states in this unit for the cases of electron numbers
from nd=4 to 7. The case of nd=6 corresponds to the average
density in LiV2O4 �d1.5 per vanadium atom�, and other cases
describe charge excitations. One important result is that these
low-energy states can be represented very precisely by a
simple picture of molecular orbitals. The ground state of the
nd=4 case has a closed-shell electron configuration of the
lowest molecular orbital E. The ground states of the nd=5, 6,
and 7 cases are described as the fully occupied E orbitals
plus partially occupied T2

�−� orbitals in which electron spins
are polarized due to ferromagnetic Hund coupling.

Second, we derived an effective Hamiltonian for coupled
tetrahedra as for the next stage of the renormalization-group
procedure. We have performed this, particularly for the case
of 24 electrons in four coupled tetrahedra, which corresponds
to 16 vanadium atoms constituting the cubic unit cell of the
original pyrochlore lattice. This is also a natural choice of
unit for block transformation in the second stage of the
renormalization-group approach, and we have calculated the
ground state and a few lowest excited states of the effective
Hamiltonian by numerical diagonalization. One important re-
sult is that there appear three types of ground states in a
realistic region of parameters in the Hamiltonian and also
that each of them is degenerate either in the orbital sector
�1E�, in the spin sector �7A1�, or in both sectors �3T1�. It is
also important that these three types of states are nearly de-
generate to each other, and those that are not the ground state
are the lowest and the second lowest excited-state multiplets.

Third, we examined in detail which processes are impor-
tant for stabilizing these low-energy states in the four tetra-
hedra. There are two types of processes: one is a kinetic term
and the other is interaction. The former is the process of
electron hoppings from one tetrahedron to another. The in-

teraction processes do not change the electron number in
each tetrahedron but do change spin and/or orbital configu-
rations. We determined the amplitudes of effective electron
hopping between nearest-neighbor pairs of tetrahedra and
found that they are renormalized to a small value,
�0.045 eV. Since the effective hopping is small, the inter-
actions are short ranged in space and the dominant ones are
exchange processes of spin and orbital degrees of freedom
between nearest-neighbor tetrahedron pairs. In this effective
exchange process, each tetrahedron is assumed to have six
electrons and its electron configuration takes one of the de-
generate 3T1 ground states; i.e., threefold orbital degrees of
freedom and spin S=1 remain. Other tetrahedron configura-
tions are taken into account only as virtual intermediate
states of the exchange processes and they are traced out. The
interaction Hamiltonian consists of pure spin exchanges,
pure orbital exchanges, and also simultaneous exchanges of
spin and orbital. We used symmetry arguments to simplify
this interaction Hamiltonian and determined its form. Spin
space is isotropic in our starting microscopic Hamiltonian
and therefore the spin exchange is Heisenberg type. Orbital
space is not isotropic, but there are constraints in the orbital
exchanges due to the symmetries of the lattice and the orbital
wave functions along with the time-reversal symmetry. As a
result, the pure orbital exchanges are simplified to 13 inde-
pendent coupling constants. Including the pure spin-
exchange and spin-orbital couplings, the effective exchange
Hamiltonian has 34 coupling constants in total. They are
functions of the microscopic parameters and we numerically
determined their values by carrying out the second-order per-
turbation in intertetrahedron hopping.

Fourth, we calculated the ground state and low-energy
states of the spin-orbital exchange model, particularly for the
unit of four tetrahedra. We found that two sets of special
orbital configurations are stabilized by the dominant term of
the orbital exchange part. They are further coupled to each
other by subdominant orbital exchange processes to form
three low-energy orbital multiplets. These three-orbital mul-
tiplets are also coupled with spin wave functions and form
spin-orbital states in low-energy region. There, spin-orbital
wave functions are entangled in orbital and spin spaces. This
manifests strong coupling of spin and orbital degrees of free-
dom. The ground states obtained in this spin-orbital ex-
change model qualitatively agree with those obtained in Sec.
V B. This means that the overall properties of this system are
determined by local spin and orbital degrees of freedom.

Finally, combining these results, we have proposed a low-
energy effective model for LiV2O4 in Sec. VII. The effective
model proposed contains the competitions of double-
exchange and superexchange magnetic interactions coupled
with orbital degrees of freedom. Using this effective model,
we have discussed the origin of heavy Fermion behaviors in
LiV2O4. To explain heavy fermion behaviors, it is important
to identify the origins of large entropy at low temperatures.
In our effective model, the entropy arises mainly from the
finite spin �S=1� and orbital �triplet� at each tetrahedron of
the effective fcc lattice. Usually �typically insulating systems
with spin or orbital moments�, these degrees of freedom un-
dergo phase transitions. In our effective model, it is expected
that the spin or orbital moments cannot order due to the

K. HATTORI AND H. TSUNETSUGU PHYSICAL REVIEW B 79, 035115 �2009�

035115-18



competitions of interactions. In addition to this, the geo-
metrical frustrations in the effective fcc lattice would also
suppress phase transitions. This means that, after integrating
out high-energy incoherent excitations in the first
renormalization-group step, there are still a lot of low-lying
incoherent spin and orbital excitations down to low tempera-
tures and these excitations prevent quasiparticles formed.
From these, it is expected that the system evolves Fermi
surfaces and exhibits heavy fermion behaviors below a char-
acteristic temperature, at which well-defined quasiparticles
appear, which would be suppressed by these interactions.

Interestingly, an insulating phase is found at high
pressure.38 This implies that there are competing interactions
in LiV2O4 at ambient pressure. It is an open question and
interesting to explore the microscopic aspect of this transi-
tion and the relation between the heavy fermion behaviors.
As an unresolved issue, muon spin resonance ��SR� experi-
ments show39,40 two different relaxation times and it is dis-
cussed that there are at least two different vanadium sites in
the time scale of �SR. Although the energy scale discussed
in this paper is not low enough to discuss the �SR results,
we would be able to argue it by analyzing the effective
model. Another interesting experimental indication is the
Wilson ratio RW. The value of RW in LiV2O4 is similar to
those of heavy fermion compounds which are considered to
be formed by magnetic fluctuations. When there are spin and
also orbital and spin-orbital fluctuations in the low-energy
sector, it is theoretically an unresolved issue to estimate RW
and this is also one of challenging subjects. In this respect, it
is important to analyze the low-energy fluctuations in effec-
tive model �20� to see whether a heavy fermi liquid state is
realized. Elaborate large scale simulations are desired for
better understanding of this model and remain as a future
problem.

As an implication of the present approach, we make a
comment on the temperature dependence of susceptibility. In
Ref. 28, an independent tetrahedron description was applied
to fit the susceptibility data at high temperatures. We can
examine this point by calculating the energy change in the
ground state when four tetrahedra are coupled and it is esti-
mated to be �400 K per tetrahedron. This scale is not larger
than the crossover temperature of the susceptibility �Tcross
�500 K for J=0.2 and 0.3 eV� and therefore our arguments
based on isolated tetrahedron remain qualitatively valid, and
the crossover is mainly due to the suppression of charge
fluctuations. Of course, intertetrahedron spin correlations
also contribute to the temperature dependence of magnetic
moments and this is also an important future problem.

We make another comment on the scenarios of the Kondo
effect or the Mott transition. In these scenarios, localized a1g
orbitals play an important role to explain the heavy fermion
behaviors of LiV2O4. Our result is not consistent to such a
situation. In the realistic parameter space, our calculations
show that the density of a1g electron is far below unity per
site in the low-energy sector. This feature is not consistent
with these scenarios where the essential point of physics lies
in the half filled configuration of a1g orbital. Experimentally,
as observed by Jönsson et al.,7 LiV2O4 remains a bad metal
at high temperature. Moreover there is no signature of loga-
rithmic increase in the resistivity in the whole temperature

region. These results do not support the Kondo scenario in
LiV2O4 either.

In conclusion, we have investigated an effective Hamil-
tonian of three-orbital Hubbard model on a pyrochlore lat-
tice. We have discussed the intertetrahedron correlations and
one-particle excitations by carrying out two-stage real-space
renormalization-group calculations: a tetrahedron unit and
then four coupled tetrahedra. We have concentrated on 3T1
phase of one tetrahedron which has spin-one and orbital-
triplet ground states. It is found that the one-particle excita-
tions in 3T1 phase are described by only T2

�−� molecular or-
bital even in the strongly correlated regime. We have derived
an effective exchange model in the form of Kugel-Khomskii
model with spin one and orbital triplet. Low-energy orbital
correlations are analyzed together with spin-orbital correla-
tions. It is found that orbital correlations are strongly coupled
with spin correlations. Finally, we have proposed an effective
Hamiltonian for LiV2O4 similar to a t-J model, in which
there are competing ferromagnetic and antiferromagnetic in-
teractions coupled with orbital configurations together with
mobile electrons. These competing interactions are expected
to generate a small energy scale and become an origin of
heavy quasiparticles cooperating with geometrical frustration
of the pyrochlore lattice. These results would provide a good
starting point for the further studies of the renormalization-
group analysis to understand the exotic properties in LiV2O4.
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APPENDIX A: ONE PARTICLE ORBITAL

In this appendix we show the wave functions for the one-
particle molecular orbitals. There are 12 states as molecular
orbitals for one tetrahedron in our model: A1, E, T1, and 2T2.
Since there are two kinds of T2 orbitals, these two states can
mix with each other. The d-electron annihilation operators in
the molecular-orbital basis d� are given as follows �we omit
the site and spin indices�:

dA1
=

1

2�3
�
n=1

4

	�ndnyz + �ndnzx + �ndnxy
 , �A1�

dEx2−y2 =
1

2�2
�
n=1

4

	�ndnyz − �ndnzx
 , �A2�

dE3z2−r2 =
1

2�6
�
n=1

4

	2�ndnxy − �ndnyz − �ndnzx
 , �A3�

�dT1a

dT2a
�2�
� =

1

2�2
�
n=1

4

	��ndnzx + �ndnyz
 , �A4�
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�dT1b

dT2b
�2�
� =

1

2�2
�
n=1

4

	��ndnxy + �ndnzx
 , �A5�

�dT1c

dT2c
�2�
� =

1

2�2
�
n=1

4

	��ndnyz + �ndnxy
 , �A6�

�
dT2a

�1�

dT2b
�1�

dT2c
�1�
� =

1

2�
n=1

4 �dnxy

dnyz

dnzx
� , �A7�

where the signs are �
�n��= �+,−, + ,−�, �
�n��= �+,−,− ,+�,
and �
�n��= �+, + ,− ,−�. Note that rn���n ,�n ,�n� coincides
with the direction from the site n to the center of the tetra-
hedron. We label three states of T1 and two T2 representa-
tions such that �T1a ,T1b ,T1c�� 	�xy+c1z��x2−y2� , �yz
+c1x��y2−z2� , �zx+c1y��z2−y2�
, and �T2a

�n� ,T2b
�n� ,T2c

�n��� 	�xy

+c2
�n�z� , �yz+c2

�n�x� , �zx+c2
�n�y�
 for n=1 and 2, where c1 and

c2
�n� are constants. The site indices on the right-hand side of

Eqs. �A1�–�A7� are those in a unit cell and indicated in Fig.
1�a�.

APPENDIX B: ESTIMATION OF ENTROPY

In this appendix, we calculate the entropy as an ensemble
of tetrahedron units when the charge sector of one tetrahe-
dron unit is restricted to nd=5, 6, and 7 subspaces with the
degeneracy m5, m6, and m7, respectively. Since these three
subspaces have different numbers of states, the probability of
finding each charge configuration, Pn, is not the same to each
other but a function of m’s,

P5 = P7 = �2 + ��−1 � p ,

P6 = 1 − 2p = �2�−1 + 1�−1, �B1�

where �=�m5m7 /m6
2. The mixing entropy Sm is therefore

given by

Sm/kB = − �
n=5

7

Pn log Pn = − �1 − 2p�log�1 − 2p� − 2p log p .

�B2�

Adding the contributions from the degeneracy in each charge
subspace, the total entropy Stot is obtained as

Stot = Sm + kB�
n=5

7

Pn log mn = kB	log m6 + log�1 + 2��


= kB log�m6 + 2�m5m7� . �B3�

APPENDIX C: ESTIMATION OF MATRIX ELEMENTS IN
ONE-TETRAHEDRON BASIS

In this appendix, we briefly discuss how to estimate the
matrix element like �g�Si

zSj
z�g� in the one tetrahedron eigen-

states ��n� �n=1, 2, 3, and 4�. The matrix element is calcu-

lated by inserting ��1�2�3�4
� ��1�2�3�4���1�2�3�4� between Si

z

and Sj
z as a usual procedure. Then, we calculate �g�Si

zSj
z�g�

from one tetrahedron matrix elements ��n��Si
z��n� for i�n and

the wave function of the ground state �g�. Spin correlation
between the two sites in different tetrahedra and that in the
same tetrahedron are given as follows:

�g�Si
zSj

z�g� = �
�1�2

� �
�3�4

� �
�3��4�

�W�1�2�3�4

g W
�1�2�3��4�
g ��3�Si

z��3��

���4�Sj
z��4�� for i � 3 and j � 4, �C1�

�g�Si
zSj

z�g� = �
�1�2�3

� �
�4�4�

�W�1�2�3�4

g W
�1�2�3�4�
g

� ��4�Si
zSj

z��4�� for i � 4 and j � 4.

�C2�

Here, the ground-state wave function W�1�2�3�4

g is given by
Eq. �12�, and we have taken it as real.

APPENDIX D: EXCHANGE COUPLING CONSTANTS
BETWEEN TETRAHEDRA

In this appendix, we show how to estimate J1
�� and J2

��

from the numerically obtained Hex
nm. To this end, we use the

following Fierz identities:

Tr	Sa�n�Sb�n�
 = 3 � 2	ab, �D1�

Tr	T��n�T��n�
 = 3 � 2	��, �D2�

where Tr is taken over in both spin and orbital spaces of one
tetrahedron. Using Eqs. �D1� and �D2�, we obtain

J1
���nm� =

1

3 � 23Tr�	T��n�T��m�Hex
nm
 , �D3�

J2
���nm� =

1

3 � 24Tr�	S�n� · S�m�T��n�T��m�Hex
nm
 ,

�D4�

where Tr� is taken over in both spin and orbital spaces for
two tetrahedra n and m.

In principle, we can estimate any exchange coupling con-
stants by using Eqs. �D3� and �D4�. However, selection rules
exist for J1

�� and J2
�� and some elements vanish due to the

symmetry of the T1 orbital. There are two types of symmetry
operations which are used to reduce the number of indepen-
dent coupling constants. �i� Mirror: �+ �↔ �−� for both n and
m sites simultaneously; �ii� C2 rotation: n↔m. First, under
operation �i�, operators T3, T5, and T6 at each tetrahedron
change their sign while the others do not. Thus, the products
including one of the former groups, for example, T3�n�T7�m�,
cannot appear in the exchange interactions, therefore
J1

37�nm�=0. Second, under operation �ii�, T��n� ��=1, 2, 5,
and 6� are transformed to −T��m�. The others change their
site index but do not change their sign. From this, the terms
including one of them appear in antisymmetric combination,
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T��n�T��m�−T��n�T��m�. The other terms appear in sym-
metric combination T��n�T��m�+T��n�T��m�. This leads to
J1

��=−J1
�� for the first case, while J1

��=J1
�� for the second

case. Using these properties and the fact that the exchange
interactions are real,41 it turns out that the numbers of inde-
pendent couplings are 13 in J1

�� and 21 in J2
��.42

APPENDIX E: ORBITAL WAVE FUNCTIONS

In this appendix, we study the orbital part of exchange
model �18� and explain in detail the calculation of low-
energy eigenstates in the unit of four coupled tetrahedra. As
discussed in Sec. VI C, two sets of states are favored by the
largest term J1

88 of the orbital couplings: 6 states of type �a�
and 24 states of type �b�. Half of them are shown in Figs.
25�a� and 25�b� with the arrow representation explained in
Fig. 21. Some of these are defined with minus sign as a
phase factor for later convenience. The other half of the
states are defined by reversing the direction of arrows in the
part of closed path and denoted with prime symbol such as
�� as shown in Fig. 25�c�. We solve the eigenvalue problem
of the orbital exchange Hamiltonian in the subspace of these
30 states of types �a� and �b�.

The cluster of the coupled four tetrahedra has also a tet-
rahedral symmetry Td and this is useful to simplify the ei-
genvalue problem. As explained in Sec. VI C, the six states
of type �a� are classified to three irreducible representations,
A1 � E � T1, and they are given as

�a,A1� =
1
�6

�1 + R̂���ax + �ay + �az� , �E1�

�a,Ex2−y2� =
1

2
�1 + R̂���ax − �ay� , �E2�

�a,T1a� =
1
�2

�1 − R̂��ax. �E3�

Here R̂ is the operator that reverses the arrow direction in the

closed path part, i.e., R̂�=��, and the other basis states of the
E and T1 representations are obtained by applying appropri-
ate symmetry operations to these. Similarly, 24 states of type
�b� are classified to A1 � A2 � 2E � 3T1 � 3T2 and the repre-
sentatives of their basis states are

��b,A1�
�b,A2� � =

1
�24

�1 � R̂��
i�j

�ij , �E4�

��b,Ex2−y2
�1� �

�b,Ex2−y2
�2� � � =

1

4
�R̂ � 1���14 − �13 + �23 − �24 + �32 − �31

+ �41 − �42� , �E5�

��b,T1a
�1��

�b,T2a
�1�� � =

1
�8

�1 � R̂���13 − �24 + �31 − �42� , �E6�

��b,T1a
�2��

�b,T2a
�2�� � =

1
�8

	��14 − �23 + �32 − �41�

� R̂��12 − �21 + �34 − �43�
 , �E7�

��b,T1a
�3��

�b,T2a
�3�� � =

1
�8

	��12 − �21 + �34 − �43�

� R̂��14 − �23 + �32 − �41�
 . �E8�

The other basis states are also generated by applying appro-
priate symmetry operations.

The orbital exchange Hamiltonian for the four tetrahedra,

Horb = �
1
n�m
4

�
�,�=1

8
2

3
J1

���mn�T��m�T��n� , �E9�

has finite matrix elements only between the basis states in
the same representation. In the subspace of 30 states of types
�a� and �b�, some pairs of coupling constants are not inde-
pendent and it is convenient to introduce the parameters
K���J1

11+J1
55�� �J1

22+J1
66�. The J1

88 term gives a constant
energy E0=−6J1

88 in this subspace. Aside from this constant,
the results are the following:

�a� A1 representation: �dimension 2�,

�a,A1�Horb�a,A1� =
4

3
J1

33, �E10�

�b,A1�Horb�b,A1� = − K+ − 3�J1
18 + �J1

17 − �J1
36 − �J1

42,

�E11�

(a)

(b)

ϕ
ax

ϕ
ay

ϕ
az

ϕ12
ϕ13

ϕ14

ϕ21
−ϕ23

−ϕ24

ϕ31
−ϕ32

−ϕ34

ϕ41
−ϕ42

−ϕ43

ϕ
ax

ϕ12''

(c)

FIG. 25. Orbital basis wave functions. �a� Closed path graphs.

�b� Lasso graphs. See also Fig. 21. �c� Examples of ��= R̂�.
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�a,A1�Horb�b,A1� =
2

3
K− − 2�J1

78 + 2�J1
18 − �J1

17 − �J1
42,

�E12�

where �=�8 /3, �= �2 /3�3/2 and �=4 /�27.
�b� A2 representation: �dimension 1�,

�b,A2�Horb�b,A2� =
1

3
K+ − 2�J1

78 − �J1
18 − �J1

17 + �J1
36 + �J1

42.

�E13�

�c� E representation: �dimension 3�,

�a,E�Horb�a,E� =
4

3
J1

33, �E14�

�b,E�1��Horb�b,E�1�� = − K+ +
3

2
�J1

18 −
1

2
�J1

17 +
1

2
�J1

36

+
1

2
�J1

42, �E15�

�b,E�2��Horb�b,E�2�� =
1

3
K+ + �J1

78 +
1

2
�J1

18 +
1

2
�J1

17 −
1

2
�J1

36

−
1

2
�J1

42, �E16�

�a,E�Horb�b,E�1�� =
1

3
K− − �J1

78 + �J1
18 + �J1

17 −
1

6
J1

33 + �J1
42,

�E17�

�a,E�Horb�b,E�2�� =
1
�3

�K− + 3�J1
78 − 3�J1

18� , �E18�

�b,E�1��Horb�b,E�2�� =
�3

2
��J1

78 − �J1
18 − �J1

17 − �J1
36 + �J1

42� .

�E19�

�d� T1 representation: �dimension 4�,

�a,T�1Horb�a,T1� =
4

3
J1

33, �E20�

�b,T1
�1��Horb�b,T1

�1�� = −
1

3
K+, �E21�

�b,T1
�2��Horb�b,T1

�2�� = �1

3
K+ − �J1

78 + �J1
18 + �J1

36� ,

�E22�

�b,T1
�3��Horb�b,T1

�3�� = −
1

3
�K+ − 3�J1

17 + 3�J1
42� , �E23�

�a,T1�Horb�b,T1
�1�� = − ��J1

17 + J1
42� , �E24�

�a,T1�Horb�b,T1
�2�� = −

2

3
K−, �E25�

�a,T1�Horb�b,T1
�3�� = 2�J1

78 − 2�J1
18, �E26�

�b,T1
�1��Horb�b,T1

�2�� =
1

2
�J1

78 + �J1
18, �E27�

�b,T1
�1��Horb�b,T1

�3�� = −
1

2
�J1

78 + 2�J1
18 + �J1

36, �E28�

�b,T1
�2��Horb�b,T1

�3�� = −
1

2
�J1

78 − �J1
18. �E29�

�e� T2 representation: �dimension 3�,

�b,T2
�1��Horb�b,T2

�1�� = K+, �E30�

�b,T2
�2��Horb�b,T2

�2�� =
1

3
K+ + �J1

78 − �J1
18 − �J1

36,

�E31�

�b,T2
�3��Horb�b,T2

�3�� = −
1

3
K+ − �J1

17 + �J1
42, �E32�

�b,T2
�1��Horb�b,T2

�2�� =
1

2
�J1

78 + �J1
18, �E33�

�b,T2
�1��Horb�b,T2

�3�� =
3

2
�J1

78 − �J1
36, �E34�

�b,T2
�2��Horb�b,T2

�3�� = −
1

2
�J1

78 − �J1
18. �E35�

Thus the Hamiltonian is reduced to small matrices and the
largest size of matrix is four. It is possible to obtain analytic
expressions of the eigenenergies, but we do not write here
very lengthy results.

APPENDIX F: WAVE FUNCTIONS FOR FOUR S=1 SPINS
ON A TETRAHEDRON

In this appendix, we show the spin wave functions on a
tetrahedron constructed of four spin S=1. These wave func-
tions are classified by the total spin S and the irreducible
representation � of Td point group and listed in Table V. The
point group Td is isomorphic to the symmetric group S4 when
permutations of tetrahedron vertices are concerned, and
therefore Young diagrams can alternatively be used for irre-
ducible representations �see Fig. 26�. This is useful particu-
larly when we see the symmetries of the wave functions.

In the following, the spin wave functions are represented
by the linear combination of �sz�1�sz�2�sz�3�sz�4��, where
sz�n� �=−1, 0, and 1� represents the eigenvalue for the z
component of the spin at the site �tetrahedron� n in Fig. 1�b�.
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For convenience, we write −1 as 1̄ and list the highest states
�Sz=S� below.

1. Wave functions for S=3 and 4

Although we do not discuss the spin wave function with
S=3 and 4 in this paper, we list the form of the wave func-
tions for completeness,

�a� S=4, Sz=4,

�9A1� = �1111� .

�b� S=3, Sz=3,

�7T2a� =
1

2
	�1110� + �1101� − �1011� − �0111�
 , �F2�

�7T2b� =
1

2
	�1110� − �1101� + �1011� − �0111�
 , �F3�

�7T2c� =
1

2
	− �1110� + �1101� + �1011� − �0111�
 . �F4�

2. Wave functions for S=2, Sz=2

The spin wave functions for S=2 are used for discussing
the 5A2 spin-orbital ground states of four tetrahedra in Sec.
VI D,

�5A1� =
�6

2�7
	�1111̄� + permutations
 −� 1

21
	�0011�

+ permutations
 , �F5�

�5Ex2−y2� =
1

2
	�1010� − �1001� − �0110� + �0101�
 , �F6�

�5E3z2−r2� =
1

2�2
	2�1100� + 2�0011� − �1001� − �1010�

− �0110� − �0101�
 , �F7�

�5T2a� =
1
�6

	�1111̄� + �111̄1� − �11̄11� − �1̄111�
 −
1
�6

	�1100�

− �0011�
 , �F8�

�5T2b� =
1
�6

	�1111̄� − �111̄1� + �11̄11� − �1̄111�
 −
1
�6

	�1010�

− �0101�
 , �F9�

�5T2c� =
1
�6

	− �1111̄� + �111̄1� + �11̄11� − �1̄111�


−
1
�6

	�1001� − �0110�
 . �F10�

3. Wave functions for S=1, Sz=1

The spin wave functions for S=1 are used for discussing
the 3T1 spin-orbital ground states of four tetrahedra in Sec.
VI D. The wave functions are given as

�3T1a� =
1

2�2
	�01̄11� − �1̄011� + �1101̄� − �111̄0� + �1̄110�

− �0111̄� + �101̄1� − �11̄01�
 , �F11�

�3T1b� =
1

2�2
	�011̄1� − �1̄101� + �11̄10� − �1011̄� + �1̄011�

− �01̄11� + �1101̄� − �111̄0�
 , �F12�

�3T1c� =
1

2�2
	�0111̄� − �1̄110� + �101̄1� − �11̄01� + �1̄101�

− �011̄1� + �11̄10� − �1011̄�
 , �F13�

�3T2a� =
1

�10
	�0001� + �0010� − �0100� − �1000�


−
1

�10
	�01̄11� + �1̄011� − �1101̄� − �111̄0�


−
1

2�10
	�0111̄� − �1̄110� + �101̄1� − �11̄01� + �011̄1�

− �1̄101� + �1011̄� − �11̄10�
 , �F14�

�3T2b� =
1

�10
	�0100� − �0001� + �0010� − �1000�


−
1

�10
	�011̄1� + �1̄101� − �11̄10� − �1011̄�


−
1

2�10
	�01̄11� − �1̄011� + �1101̄� − �111̄0� + �0111̄�

− �1̄110� + �11̄01� − �101̄1�
 , �F15�

TABLE V. List of the spin wave functions on a tetrahedron
constructed by four spin-1 states.

S �

4 A1 �singlet�
3 T2 �triplet�
2 A1 �singlet�, E �doublet�, T2 �triplet�
1 T1 �triplet�, T2 �triplet�
0 A1 �singlet�, E �doublet�

A1 T1 T2E

15' 6 153

FIG. 26. Young diagrams for symmetric group S4.
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�3T2c� =
1

�10
	− �0001� + �0010� + �0100� − �1000�


−
1

�10
	�0111̄� + �1̄110� − �101̄1� − �11̄01�


−
1

2�10
	�011̄1� − �1̄101� + �11̄10� − �1011̄� + �01̄11�

− �1̄011� + �111̄0� − �1101̄�
 . �F16�

4. Wave functions for S=0

The spin wave functions for S=0 are used for discussing
the 1E spin-orbital ground states of four tetrahedra in Sec.
VI D. The wave functions are given as

�1A1� =
2

3�5
	�111̄1̄� + permutations
 +

1
�5

�0000�

−
1

3�5
	�1001̄� + permutations
 , �F17�

�1Ex2−y2� =
1

2�3
�

s=�1
	�s00s̄� + �0ss̄0� + �ss̄s̄s� − �ss̄ss̄� − �0s0s̄�

− �s0s̄0�
 , �F18�

�1E3z2−r2� =
1

6 �
s=�1

	2�sss̄s̄� − �ss̄ss̄� − �ss̄s̄s� + 2�ss̄00�

+ 2�00ss̄� − �s00s̄� − �0ss̄0� − �0s0s̄� − �s0s̄0�
 .

�F19�

When we rewrite these wave functions by using direct prod-
ucts of two bond spins, e.g., S12

� �S��1�+S��2� and S34
�

�S��3�+S��4�, we obtain

�1A1� =
2

3
�22� +

�5

3
�00� , �F20�

�1Ex2−y2� = �11� , �F21�

�1E3z2−r2� =
�5

3
�22� −

2

3
�00� . �F22�

Here �S12S34� represents the spin-singlet state constructed
from the bond state with the total spins S12 and S34.
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